Simple Graph Convolution (SGC) ============ - Paper link: [Simplifying Graph Convolutional Networks](https://arxiv.org/abs/1902.07153) - Author's code repo: [https://github.com/Tiiiger/SGC](https://github.com/Tiiiger/SGC). Dependencies ------------ - MXNET 1.5+ - requests ``bash pip install torch requests `` Codes ----- The folder contains an implementation of SGC (`sgc.py`). Results ------- Run with following (available dataset: "cora", "citeseer", "pubmed") ```bash DGLBACKEND=mxnet python3 sgc.py --dataset cora --gpu 0 DGLBACKEND=mxnet python3 sgc.py --dataset citeseer --weight-decay 5e-5 --n-epochs 150 --bias --gpu 0 DGLBACKEND=mxnet python3 sgc.py --dataset pubmed --weight-decay 5e-5 --bias --gpu 0 ``` On NVIDIA V100 * cora: 0.818 (paper: 0.810) * citeseer: 0.725 (paper: 0.719) * pubmed: 0.788 (paper: 0.789)