import argparse, time, os, pickle import numpy as np import dgl import torch import torch.optim as optim from models import LANDER from dataset import LanderDataset ########### # ArgParser parser = argparse.ArgumentParser() # Dataset parser.add_argument('--data_path', type=str, required=True) parser.add_argument('--levels', type=str, default='1') parser.add_argument('--faiss_gpu', action='store_true') parser.add_argument('--model_filename', type=str, default='lander.pth') # KNN parser.add_argument('--knn_k', type=str, default='10') parser.add_argument('--num_workers', type=int, default=0) # Model parser.add_argument('--hidden', type=int, default=512) parser.add_argument('--num_conv', type=int, default=1) parser.add_argument('--dropout', type=float, default=0.) parser.add_argument('--gat', action='store_true') parser.add_argument('--gat_k', type=int, default=1) parser.add_argument('--balance', action='store_true') parser.add_argument('--use_cluster_feat', action='store_true') parser.add_argument('--use_focal_loss', action='store_true') # Training parser.add_argument('--epochs', type=int, default=100) parser.add_argument('--batch_size', type=int, default=1024) parser.add_argument('--lr', type=float, default=0.1) parser.add_argument('--momentum', type=float, default=0.9) parser.add_argument('--weight_decay', type=float, default=1e-5) args = parser.parse_args() print(args) ########################### # Environment Configuration if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') ################## # Data Preparation with open(args.data_path, 'rb') as f: features, labels = pickle.load(f) k_list = [int(k) for k in args.knn_k.split(',')] lvl_list = [int(l) for l in args.levels.split(',')] gs = [] nbrs = [] ks = [] for k, l in zip(k_list, lvl_list): dataset = LanderDataset(features=features, labels=labels, k=k, levels=l, faiss_gpu=args.faiss_gpu) gs += [g for g in dataset.gs] ks += [k for g in dataset.gs] nbrs += [nbr for nbr in dataset.nbrs] print('Dataset Prepared.') def set_train_sampler_loader(g, k): fanouts = [k-1 for i in range(args.num_conv + 1)] sampler = dgl.dataloading.MultiLayerNeighborSampler(fanouts) # fix the number of edges train_dataloader = dgl.dataloading.DataLoader( g, torch.arange(g.number_of_nodes()), sampler, batch_size=args.batch_size, shuffle=True, drop_last=False, num_workers=args.num_workers ) return train_dataloader train_loaders = [] for gidx, g in enumerate(gs): train_dataloader = set_train_sampler_loader(gs[gidx], ks[gidx]) train_loaders.append(train_dataloader) ################## # Model Definition feature_dim = gs[0].ndata['features'].shape[1] model = LANDER(feature_dim=feature_dim, nhid=args.hidden, num_conv=args.num_conv, dropout=args.dropout, use_GAT=args.gat, K=args.gat_k, balance=args.balance, use_cluster_feat=args.use_cluster_feat, use_focal_loss=args.use_focal_loss) model = model.to(device) model.train() ################# # Hyperparameters opt = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) # keep num_batch_per_loader the same for every sub_dataloader num_batch_per_loader = len(train_loaders[0]) train_loaders = [iter(train_loader) for train_loader in train_loaders] num_loaders = len(train_loaders) scheduler = optim.lr_scheduler.CosineAnnealingLR(opt, T_max=args.epochs * num_batch_per_loader * num_loaders, eta_min=1e-5) print('Start Training.') ############### # Training Loop for epoch in range(args.epochs): loss_den_val_total = [] loss_conn_val_total = [] loss_val_total = [] for batch in range(num_batch_per_loader): for loader_id in range(num_loaders): try: minibatch = next(train_loaders[loader_id]) except: train_loaders[loader_id] = iter(set_train_sampler_loader(gs[loader_id], ks[loader_id])) minibatch = next(train_loaders[loader_id]) input_nodes, sub_g, bipartites = minibatch sub_g = sub_g.to(device) bipartites = [b.to(device) for b in bipartites] # get the feature for the input_nodes opt.zero_grad() output_bipartite = model(bipartites) loss, loss_den_val, loss_conn_val = model.compute_loss(output_bipartite) loss_den_val_total.append(loss_den_val) loss_conn_val_total.append(loss_conn_val) loss_val_total.append(loss.item()) loss.backward() opt.step() if (batch + 1) % 10 == 0: print('epoch: %d, batch: %d / %d, loader_id : %d / %d, loss: %.6f, loss_den: %.6f, loss_conn: %.6f'% (epoch, batch, num_batch_per_loader, loader_id, num_loaders, loss.item(), loss_den_val, loss_conn_val)) scheduler.step() print('epoch: %d, loss: %.6f, loss_den: %.6f, loss_conn: %.6f'% (epoch, np.array(loss_val_total).mean(), np.array(loss_den_val_total).mean(), np.array(loss_conn_val_total).mean())) torch.save(model.state_dict(), args.model_filename) torch.save(model.state_dict(), args.model_filename)