import argparse import logging import math import os import random import numpy as np import torch import torch.cuda from scipy.stats import t def get_stats(array, conf_interval=False, name=None, stdout=False, logout=False): """Compute mean and standard deviation from an numerical array Args: array (array like obj): The numerical array, this array can be convert to :obj:`torch.Tensor`. conf_interval (bool, optional): If True, compute the confidence interval bound (95%) instead of the std value. (default: :obj:`False`) name (str, optional): The name of this numerical array, for log usage. (default: :obj:`None`) stdout (bool, optional): Whether to output result to the terminal. (default: :obj:`False`) logout (bool, optional): Whether to output result via logging module. (default: :obj:`False`) """ eps = 1e-9 array = torch.Tensor(array) std, mean = torch.std_mean(array) std = std.item() mean = mean.item() center = mean if conf_interval: n = array.size(0) se = std / (math.sqrt(n) + eps) t_value = t.ppf(0.975, df=n-1) err_bound = t_value * se else: err_bound = std # log and print if name is None: name = "array {}".format(id(array)) log = "{}: {:.4f}(+-{:.4f})".format(name, center, err_bound) if stdout: print(log) if logout: logging.info(log) return center, err_bound def parse_args(): parser = argparse.ArgumentParser("Graph Cross Network") parser.add_argument("--pool_ratios", nargs="+", type=float, help="The pooling ratios used in graph cross layers") parser.add_argument("--hidden_dim", type=int, default=96, help="The number of hidden channels in GXN") parser.add_argument("--cross_weight", type=float, default=1., help="Weight parameter used in graph cross layer") parser.add_argument("--fuse_weight", type=float, default=1., help="Weight parameter for feature fusion") parser.add_argument("--num_cross_layers", type=int, default=2, help="The number of graph corss layers") parser.add_argument("--readout_nodes", type=int, default=30, help="Number of nodes for each graph after final graph pooling") parser.add_argument("--conv1d_dims", nargs="+", type=int, help="Number of channels in conv operations in the end of graph cross net") parser.add_argument("--conv1d_kws", nargs="+", type=int, help="Kernel sizes of conv1d operations") parser.add_argument("--dropout", type=float, default=0., help="Dropout rate") parser.add_argument("--embed_dim", type=int, default=1024, help="Number of channels of graph embedding") parser.add_argument("--final_dense_hidden_dim", type=int, default=128, help="The number of hidden channels in final dense layers") parser.add_argument("--batch_size", type=int, default=64, help="Batch size") parser.add_argument("--lr", type=float, default=1e-4, help="Learning rate") parser.add_argument("--weight_decay", type=float, default=0., help="Weight decay rate") parser.add_argument("--epochs", type=int, default=1000, help="Number of training epochs") parser.add_argument("--patience", type=int, default=20, help="Patience for early stopping") parser.add_argument("--num_trials", type=int, default=1, help="Number of trials") parser.add_argument("--device", type=int, default=0, help="Computation device id, -1 for cpu") parser.add_argument("--dataset", type=str, default="DD", help="Dataset used for training") parser.add_argument("--seed", type=int, default=-1, help="Random seed, -1 for unset") parser.add_argument("--print_every", type=int, default=10, help="Print train log every ? epochs, -1 for silence training") parser.add_argument("--dataset_path", type=str, default="./datasets", help="Path holding your dataset") parser.add_argument("--output_path", type=str, default="./output", help="Path holding your result files") args = parser.parse_args() # default value for list hyper-parameters if not args.pool_ratios or len(args.pool_ratios) < 2: args.pool_ratios = [0.8, 0.7] logging.warning("No valid pool_ratios is given, " "using default value '{}'".format(args.pool_ratios)) if not args.conv1d_dims or len(args.conv1d_dims) < 2: args.conv1d_dims = [16, 32] logging.warning("No valid conv1d_dims is give, " "using default value {}".format(args.conv1d_dims)) if not args.conv1d_kws or len(args.conv1d_kws) < 1: args.conv1d_kws = [5] logging.warning("No valid conv1d_kws is given, " "using default value '{}'".format(args.conv1d_kws)) # device args.device = "cpu" if args.device < 0 else "cuda:{}".format(args.device) if not torch.cuda.is_available(): logging.warning("GPU is not available, using CPU for training") args.device = "cpu" else: logging.warning("Device: {}".format(args.device)) # random seed if args.seed >= 0: torch.manual_seed(args.seed) random.seed(args.seed) np.random.seed(args.seed) if args.device != "cpu": torch.cuda.manual_seed(args.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # print every if args.print_every < 0: args.print_every = args.epochs + 1 # path paths = [args.output_path, args.dataset_path] for p in paths: if not os.path.exists(p): os.makedirs(p) # datasets ad-hoc if args.dataset in ['COLLAB', 'IMDB-BINARY', 'IMDB-MULTI', 'ENZYMES']: args.degree_as_feature = True else: args.degree_as_feature = False return args