import pytest import torch import sys from dgl.mock_sparse2 import create_from_coo, create_from_csr, create_from_csc # FIXME: Skipping tests on win. if not sys.platform.startswith("linux"): pytest.skip("skipping tests on win", allow_module_level=True) @pytest.mark.parametrize("dense_dim", [None, 4]) @pytest.mark.parametrize("row", [[0, 0, 1, 2], (0, 1, 2, 4)]) @pytest.mark.parametrize("col", [(0, 1, 2, 2), (1, 3, 3, 4)]) @pytest.mark.parametrize("shape", [None, (3, 5), (5, 3)]) def test_create_from_coo(dense_dim, row, col, shape): # Skip invalid matrices if shape is not None and ( max(row) >= shape[0] or max(col) >= shape[1] ): return val_shape = (len(row),) if dense_dim is not None: val_shape += (dense_dim,) val = torch.randn(val_shape) row = torch.tensor(row) col = torch.tensor(col) mat = create_from_coo(row, col, val, shape) if shape is None: shape = (torch.max(row).item() + 1, torch.max(col).item() + 1) mat_row, mat_col, mat_val = mat.coo() assert mat.shape == shape assert mat.nnz == row.numel() assert mat.dtype == val.dtype assert torch.allclose(mat_val, val) assert torch.allclose(mat_row, row) assert torch.allclose(mat_col, col) @pytest.mark.parametrize("dense_dim", [None, 4]) @pytest.mark.parametrize("indptr", [[0, 0, 1, 4], (0, 1, 2, 4)]) @pytest.mark.parametrize("indices", [(0, 1, 2, 3), (1, 2, 3, 4)]) @pytest.mark.parametrize("shape", [None, (3, 5)]) def test_create_from_csr(dense_dim, indptr, indices, shape): val_shape = (len(indices),) if dense_dim is not None: val_shape += (dense_dim,) val = torch.randn(val_shape) indptr = torch.tensor(indptr) indices = torch.tensor(indices) mat = create_from_csr(indptr, indices, val, shape) if shape is None: shape = (indptr.numel() - 1, torch.max(indices).item() + 1) assert mat.device == val.device assert mat.shape == shape assert mat.nnz == indices.numel() assert mat.dtype == val.dtype mat_indptr, mat_indices, mat_val = mat.csr() assert torch.allclose(mat_indptr, indptr) assert torch.allclose(mat_indices, indices) assert torch.allclose(mat_val, val) @pytest.mark.parametrize("dense_dim", [None, 4]) @pytest.mark.parametrize("indptr", [[0, 0, 1, 4], (0, 1, 2, 4)]) @pytest.mark.parametrize("indices", [(0, 1, 2, 3), (1, 2, 3, 4)]) @pytest.mark.parametrize("shape", [None, (5, 3)]) def test_create_from_csc(dense_dim, indptr, indices, shape): val_shape = (len(indices),) if dense_dim is not None: val_shape += (dense_dim,) val = torch.randn(val_shape) indptr = torch.tensor(indptr) indices = torch.tensor(indices) mat = create_from_csc(indptr, indices, val, shape) if shape is None: shape = (torch.max(indices).item() + 1, indptr.numel() - 1) assert mat.device == val.device assert mat.shape == shape assert mat.nnz == indices.numel() assert mat.dtype == val.dtype mat_indptr, mat_indices, mat_val = mat.csc() assert torch.allclose(mat_indptr, indptr) assert torch.allclose(mat_indices, indices) assert torch.allclose(mat_val, val)