""" [Semi-Supervised Classification with Graph Convolutional Networks] (https://arxiv.org/abs/1609.02907) """ import dgl.sparse as dglsp import torch import torch.nn as nn import torch.nn.functional as F from dgl.data import CoraGraphDataset from torch.optim import Adam class GCN(nn.Module): def __init__(self, in_size, out_size, hidden_size=16): super().__init__() # Two-layer GCN. self.W1 = nn.Linear(in_size, hidden_size) self.W2 = nn.Linear(hidden_size, out_size) ############################################################################ # (HIGHLIGHT) Take the advantage of DGL sparse APIs to implement the GCN # forward process. ############################################################################ def forward(self, A_norm, X): X = A_norm @ self.W1(X) X = F.relu(X) X = A_norm @ self.W2(X) return X def evaluate(g, pred): label = g.ndata["label"] val_mask = g.ndata["val_mask"] test_mask = g.ndata["test_mask"] # Compute accuracy on validation/test set. val_acc = (pred[val_mask] == label[val_mask]).float().mean() test_acc = (pred[test_mask] == label[test_mask]).float().mean() return val_acc, test_acc def train(model, g, A_norm, X): label = g.ndata["label"] train_mask = g.ndata["train_mask"] optimizer = Adam(model.parameters(), lr=1e-2, weight_decay=5e-4) loss_fcn = nn.CrossEntropyLoss() for epoch in range(200): model.train() # Forward. logits = model(A_norm, X) # Compute loss with nodes in the training set. loss = loss_fcn(logits[train_mask], label[train_mask]) # Backward. optimizer.zero_grad() loss.backward() optimizer.step() # Compute prediction. pred = logits.argmax(dim=1) # Evaluate the prediction. val_acc, test_acc = evaluate(g, pred) if epoch % 20 == 0: print( f"In epoch {epoch}, loss: {loss:.3f}, val acc: {val_acc:.3f}" f", test acc: {test_acc:.3f}" ) if __name__ == "__main__": # If CUDA is available, use GPU to accelerate the training, use CPU # otherwise. dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Load graph from the existing dataset. dataset = CoraGraphDataset() g = dataset[0].to(dev) num_classes = dataset.num_classes X = g.ndata["feat"] # Create the adjacency matrix of graph. src, dst = g.edges() N = g.num_nodes() A = dglsp.from_coo(dst, src, shape=(N, N)) ############################################################################ # (HIGHLIGHT) Compute the symmetrically normalized adjacency matrix with # Sparse Matrix API ############################################################################ I = dglsp.identity(A.shape, device=dev) A_hat = A + I D_hat = dglsp.diag(A_hat.sum(1)) ** -0.5 A_norm = D_hat @ A_hat @ D_hat # Create model. in_size = X.shape[1] out_size = num_classes model = GCN(in_size, out_size).to(dev) # Kick off training. train(model, g, A_norm, X)