Graph Isomorphism Network (GIN) ============ - Paper link: [arXiv](https://arxiv.org/abs/1810.00826) [OpenReview](https://openreview.net/forum?id=ryGs6iA5Km) - Author's code repo: [https://github.com/weihua916/powerful-gnns](https://github.com/weihua916/powerful-gnns). Dependencies ------------ - PyTorch 1.1.0+ - sklearn - tqdm ``bash pip install torch sklearn tqdm `` How to run ---------- An experiment on the GIN in default settings can be run with ```bash python main.py ``` An experiment on the GIN in customized settings can be run with ```bash python main.py [--device 0 | --disable-cuda] --dataset COLLAB \ --graph_pooling_type max --neighbor_pooling_type sum ``` add `--degree_as_nlabel` to use one-hot encodings of node degrees as node feature vectors Results ------- results may **fluctuate**, due to random factors and the relatively small data set. if you want to follow the paper's setting, consider the script below. ```bash # 4 bioinformatics datasets setting graph_pooling_type=sum, the nodes have categorical input features python main.py --dataset MUTAG --device 0 \ --graph_pooling_type sum --neighbor_pooling_type sum --filename MUTAG.txt python main.py --dataset PTC --device 0 \ --graph_pooling_type sum --neighbor_pooling_type sum --filename PTC.txt python main.py --dataset NCI1 --device 0 \ --graph_pooling_type sum --neighbor_pooling_type sum --filename NCI1.txt python main.py --dataset PROTEINS --device 0 \ --graph_pooling_type sum --neighbor_pooling_type sum --filename PROTEINS.txt # 5 social network datasets setting graph_pooling_type=mean, for the REDDIT datasets, we set all node feature vectors to be the same # (thus, features here are uninformative); for the other social networks, we use one-hot encodings of node degrees. python main.py --dataset COLLAB --device 0 \ --graph_pooling_type mean --neighbor_pooling_type sum --degree_as_nlabel --filename COLLAB.txt python main.py --dataset IMDBBINARY --device 0 \ --graph_pooling_type mean --neighbor_pooling_type sum --degree_as_nlabel --filename IMDBBINARY.txt python main.py --dataset IMDBMULTI --device 0 \ --graph_pooling_type mean --neighbor_pooling_type sum --degree_as_nlabel --filename IMDBMULTI.txt python main.py --dataset REDDITBINARY --device 0 \ --graph_pooling_type mean --neighbor_pooling_type sum --filename REDDITBINARY.txt --fold_idx 6 --epoch 120 python main.py --dataset REDDITMULTI5K --device 0 \ --graph_pooling_type mean --neighbor_pooling_type sum --filename REDDITMULTI5K.txt ``` one fold of 10 result are below. | dataset | our result | paper report | | ------------- | ---------- | ------------ | | MUTAG | 89.4 | 89.4 ± 5.6 | | PTC | 68.5 | 64.6 ± 7.0 | | NCI1 | 78.5 | 82.7 ± 1.7 | | PROTEINS | 72.3 | 76.2 ± 2.8 | | COLLAB | 81.6 | 80.2 ± 1.9 | | IMDBBINARY | 73.0 | 75.1 ± 5.1 | | IMDBMULTI | 54.0 | 52.3 ± 2.8 | | REDDITBINARY | 88.0 | 92.4 ± 2.5 | | REDDITMULTI5K | 54.8 | 57.5 ± 1.5 |