#!/bin/bash # input arguments DATA="${1-DD}" # ENZYMES, DD, PROTEINS, COLLAB, IMDB-BINARY, IMDB-MULTI device=${2-0} num_trials=${3-10} print_every=${4-10} # general settings hidden_gxn=96 k1=0.8 k2=0.7 sortpooling_k=30 hidden_final=128 batch_size=64 dropout=0.5 cross_weight=1.0 fuse_weight=0.9 weight_decay=1e-3 # dataset-specific settings case ${DATA} in IMDB-BINARY) num_epochs=200 learning_rate=0.001 sortpooling_k=31 k1=0.8 k2=0.5 ;; IMDB-MULTI) num_epochs=200 learning_rate=0.001 sortpooling_k=22 k1=0.8 k2=0.7 ;; COLLAB) num_epochs=100 learning_rate=0.001 sortpooling_k=130 k1=0.9 k2=0.5 ;; DD) num_epochs=100 learning_rate=0.0005 sortpooling_k=291 k1=0.8 k2=0.6 ;; PROTEINS) num_epochs=100 learning_rate=0.001 sortpooling_k=32 k1=0.8 k2=0.7 ;; ENZYMES) num_epochs=500 learning_rate=0.0001 sortpooling_k=42 k1=0.7 k2=0.5 ;; *) num_epochs=500 learning_rate=0.00001 ;; esac python main.py \ --dataset $DATA \ --lr $learning_rate \ --epochs $num_epochs \ --hidden_dim $hidden_gxn \ --final_dense_hidden_dim $hidden_final \ --readout_nodes $sortpooling_k \ --pool_ratios $k1 $k2 \ --batch_size $batch_size \ --device $device \ --dropout $dropout \ --cross_weight $cross_weight\ --fuse_weight $fuse_weight\ --weight_decay $weight_decay\ --num_trials $num_trials\ --print_every $print_every\