import unittest import backend as F import torch import torch.distributed as dist from dgl.cuda import nccl from dgl.partition import NDArrayPartition @unittest.skipIf( F._default_context_str == "cpu", reason="NCCL only runs on GPU." ) def test_nccl_sparse_push_single_remainder(): torch.cuda.set_device("cuda:0") dist.init_process_group( backend="nccl", init_method="tcp://127.0.0.1:12345", world_size=1, rank=0, ) index = F.randint([10000], F.int32, F.ctx(), 0, 10000) value = F.uniform([10000, 100], F.float32, F.ctx(), -1.0, 1.0) part = NDArrayPartition(10000, 1, "remainder") ri, rv = nccl.sparse_all_to_all_push(index, value, part) assert F.array_equal(ri, index) assert F.array_equal(rv, value) dist.destroy_process_group() @unittest.skipIf( F._default_context_str == "cpu", reason="NCCL only runs on GPU." ) def test_nccl_sparse_pull_single_remainder(): torch.cuda.set_device("cuda:0") dist.init_process_group( backend="nccl", init_method="tcp://127.0.0.1:12345", world_size=1, rank=0, ) req_index = F.randint([10000], F.int64, F.ctx(), 0, 100000) value = F.uniform([100000, 100], F.float32, F.ctx(), -1.0, 1.0) part = NDArrayPartition(100000, 1, "remainder") rv = nccl.sparse_all_to_all_pull(req_index, value, part) exp_rv = F.gather_row(value, req_index) assert F.array_equal(rv, exp_rv) dist.destroy_process_group() @unittest.skipIf( F._default_context_str == "cpu", reason="NCCL only runs on GPU." ) def test_nccl_sparse_push_single_range(): torch.cuda.set_device("cuda:0") dist.init_process_group( backend="nccl", init_method="tcp://127.0.0.1:12345", world_size=1, rank=0, ) index = F.randint([10000], F.int32, F.ctx(), 0, 10000) value = F.uniform([10000, 100], F.float32, F.ctx(), -1.0, 1.0) part_ranges = F.copy_to( F.tensor([0, value.shape[0]], dtype=F.int64), F.ctx() ) part = NDArrayPartition(10000, 1, "range", part_ranges=part_ranges) ri, rv = nccl.sparse_all_to_all_push(index, value, part) assert F.array_equal(ri, index) assert F.array_equal(rv, value) dist.destroy_process_group() @unittest.skipIf( F._default_context_str == "cpu", reason="NCCL only runs on GPU." ) def test_nccl_sparse_pull_single_range(): torch.cuda.set_device("cuda:0") dist.init_process_group( backend="nccl", init_method="tcp://127.0.0.1:12345", world_size=1, rank=0, ) req_index = F.randint([10000], F.int64, F.ctx(), 0, 100000) value = F.uniform([100000, 100], F.float32, F.ctx(), -1.0, 1.0) part_ranges = F.copy_to( F.tensor([0, value.shape[0]], dtype=F.int64), F.ctx() ) part = NDArrayPartition(100000, 1, "range", part_ranges=part_ranges) rv = nccl.sparse_all_to_all_pull(req_index, value, part) exp_rv = F.gather_row(value, req_index) assert F.array_equal(rv, exp_rv) dist.destroy_process_group() if __name__ == "__main__": test_nccl_sparse_push_single_remainder() test_nccl_sparse_pull_single_remainder() test_nccl_sparse_push_single_range() test_nccl_sparse_pull_single_range()