import argparse import dgl import dgl.nn as dglnn import torch import torch.nn as nn import torch.nn.functional as F from dgl import AddSelfLoop from dgl.data import CiteseerGraphDataset, CoraGraphDataset, PubmedGraphDataset class SAGE(nn.Module): def __init__(self, in_size, hid_size, out_size): super().__init__() self.layers = nn.ModuleList() # two-layer GraphSAGE-mean self.layers.append(dglnn.SAGEConv(in_size, hid_size, "gcn")) self.layers.append(dglnn.SAGEConv(hid_size, out_size, "gcn")) self.dropout = nn.Dropout(0.5) def forward(self, graph, x): h = self.dropout(x) for l, layer in enumerate(self.layers): h = layer(graph, h) if l != len(self.layers) - 1: h = F.relu(h) h = self.dropout(h) return h def evaluate(g, features, labels, mask, model): model.eval() with torch.no_grad(): logits = model(g, features) logits = logits[mask] labels = labels[mask] _, indices = torch.max(logits, dim=1) correct = torch.sum(indices == labels) return correct.item() * 1.0 / len(labels) def train(g, features, labels, masks, model): # define train/val samples, loss function and optimizer train_mask, val_mask = masks loss_fcn = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=1e-2, weight_decay=5e-4) # training loop for epoch in range(200): model.train() logits = model(g, features) loss = loss_fcn(logits[train_mask], labels[train_mask]) optimizer.zero_grad() loss.backward() optimizer.step() acc = evaluate(g, features, labels, val_mask, model) print( "Epoch {:05d} | Loss {:.4f} | Accuracy {:.4f} ".format( epoch, loss.item(), acc ) ) if __name__ == "__main__": parser = argparse.ArgumentParser(description="GraphSAGE") parser.add_argument( "--dataset", type=str, default="cora", help="Dataset name ('cora', 'citeseer', 'pubmed')", ) parser.add_argument( "--dt", type=str, default="float", help="data type(float, bfloat16)", ) args = parser.parse_args() print(f"Training with DGL built-in GraphSage module") # load and preprocess dataset transform = ( AddSelfLoop() ) # by default, it will first remove self-loops to prevent duplication if args.dataset == "cora": data = CoraGraphDataset(transform=transform) elif args.dataset == "citeseer": data = CiteseerGraphDataset(transform=transform) elif args.dataset == "pubmed": data = PubmedGraphDataset(transform=transform) else: raise ValueError("Unknown dataset: {}".format(args.dataset)) g = data[0] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") g = g.int().to(device) features = g.ndata["feat"] labels = g.ndata["label"] masks = g.ndata["train_mask"], g.ndata["val_mask"] # create GraphSAGE model in_size = features.shape[1] out_size = data.num_classes model = SAGE(in_size, 16, out_size).to(device) # convert model and graph to bfloat16 if needed if args.dt == "bfloat16": g = dgl.to_bfloat16(g) features = features.to(dtype=torch.bfloat16) model = model.to(dtype=torch.bfloat16) # model training print("Training...") train(g, features, labels, masks, model) # test the model print("Testing...") acc = evaluate(g, features, labels, g.ndata["test_mask"], model) print("Test accuracy {:.4f}".format(acc))