""" Semi-Supervised Classification with Graph Convolutional Networks Paper: https://arxiv.org/abs/1609.02907 Code: https://github.com/tkipf/gcn GCN with batch processing """ import argparse import numpy as np import time import mxnet as mx from mxnet import gluon import dgl from dgl import DGLGraph from dgl.data import register_data_args, load_data def gcn_msg(src, edge): return src def gcn_reduce(node, msgs): return mx.nd.sum(msgs, 1) class NodeUpdateModule(gluon.Block): def __init__(self, out_feats, activation=None): super(NodeUpdateModule, self).__init__() self.linear = gluon.nn.Dense(out_feats, activation=activation) def forward(self, node): return self.linear(node) class GCN(gluon.Block): def __init__(self, g, in_feats, n_hidden, n_classes, n_layers, activation, dropout): super(GCN, self).__init__() self.g = g self.dropout = dropout # input layer self.layers = gluon.nn.Sequential() self.layers.add(NodeUpdateModule(n_hidden, activation)) # hidden layers for i in range(n_layers - 1): self.layers.add(NodeUpdateModule(n_hidden, activation)) # output layer self.layers.add(NodeUpdateModule(n_classes)) def forward(self, features): self.g.set_n_repr(features) for layer in self.layers: # apply dropout if self.dropout: val = F.dropout(self.g.get_n_repr(), p=self.dropout) self.g.set_n_repr(val) self.g.update_all(gcn_msg, gcn_reduce, layer) return self.g.pop_n_repr() def main(args): # load and preprocess dataset data = load_data(args) features = mx.nd.array(data.features) labels = mx.nd.array(data.labels) mask = mx.nd.array(data.train_mask) in_feats = features.shape[1] n_classes = data.num_labels n_edges = data.graph.number_of_edges() if args.gpu <= 0: cuda = False ctx = mx.cpu(0) else: cuda = True features = features.as_in_context(mx.gpu(0)) labels = labels.as_in_context(mx.gpu(0)) mask = mask.as_in_context(mx.gpu(0)) ctx = mx.gpu(0) # create GCN model g = DGLGraph(data.graph) model = GCN(g, in_feats, args.n_hidden, n_classes, args.n_layers, 'relu', args.dropout) model.initialize(ctx=ctx) # use optimizer trainer = gluon.Trainer(model.collect_params(), 'adam', {'learning_rate': args.lr}) # initialize graph dur = [] for epoch in range(args.n_epochs): if epoch >= 3: t0 = time.time() # forward with mx.autograd.record(): logits = model(features) loss = mx.nd.softmax_cross_entropy(logits, labels) #optimizer.zero_grad() loss.backward() trainer.step(features.shape[0]) if epoch >= 3: dur.append(time.time() - t0) print("Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f} | ETputs(KTEPS) {:.2f}".format( epoch, loss.asnumpy()[0], np.mean(dur), n_edges / np.mean(dur) / 1000)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='GCN') register_data_args(parser) parser.add_argument("--dropout", type=float, default=0, help="dropout probability") parser.add_argument("--gpu", type=int, default=-1, help="gpu") parser.add_argument("--lr", type=float, default=1e-3, help="learning rate") parser.add_argument("--n-epochs", type=int, default=20, help="number of training epochs") parser.add_argument("--n-hidden", type=int, default=16, help="number of hidden gcn units") parser.add_argument("--n-layers", type=int, default=1, help="number of hidden gcn layers") args = parser.parse_args() main(args)