# DGL Implementation of Label Propagation This DGL example implements the method proposed in the paper [Learning from Labeled and Unlabeled Data with Label Propagation](https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.3864&rep=rep1&type=pdf). Contributor: [xnuohz](https://github.com/xnuohz) ### Requirements The codebase is implemented in Python 3.7. For version requirement of packages, see below. ``` dgl 0.6.0.post1 torch 1.7.0 ``` ### The graph datasets used in this example The DGL's built-in Cora, Pubmed and Citeseer datasets. Dataset summary: | Dataset | #Nodes | #Edges | #Feats | #Classes | #Train Nodes | #Val Nodes | #Test Nodes | | :------: | :----: | :----: | :----: | :------: | :----------: | :--------: | :---------: | | Citeseer | 3,327 | 9,228 | 3,703 | 6 | 120 | 500 | 1000 | | Cora | 2,708 | 10,556 | 1,433 | 7 | 140 | 500 | 1000 | | Pubmed | 19,717 | 88,651 | 500 | 3 | 60 | 500 | 1000 | ### Usage ```bash # Cora python main.py # Citeseer python main.py --dataset Citeseer --num-layers 100 --alpha 0.99 # Pubmed python main.py --dataset Pubmed --num-layers 60 --alpha 1 ``` ### Performance | Dataset | Cora | Citeseer | Pubmed | | :----------: | :---: | :------: | :----: | | Results(DGL) | 69.20 | 51.30 | 71.40 |