import sys import numpy as np from tqdm import tqdm import torch import torch.nn as nn import torch.optim as optim from dgl.data import GINDataset from dataloader import GINDataLoader from ginparser import Parser from gin import GIN def train(args, net, trainloader, optimizer, criterion, epoch): net.train() running_loss = 0 total_iters = len(trainloader) # setup the offset to avoid the overlap with mouse cursor bar = tqdm(range(total_iters), unit='batch', position=2, file=sys.stdout) for pos, (graphs, labels) in zip(bar, trainloader): # batch graphs will be shipped to device in forward part of model labels = labels.to(args.device) graphs = graphs.to(args.device) feat = graphs.ndata.pop('attr') outputs = net(graphs, feat) loss = criterion(outputs, labels) running_loss += loss.item() # backprop optimizer.zero_grad() loss.backward() optimizer.step() # report bar.set_description('epoch-{}'.format(epoch)) bar.close() # the final batch will be aligned running_loss = running_loss / total_iters return running_loss def eval_net(args, net, dataloader, criterion): net.eval() total = 0 total_loss = 0 total_correct = 0 for data in dataloader: graphs, labels = data graphs = graphs.to(args.device) labels = labels.to(args.device) feat = graphs.ndata.pop('attr') total += len(labels) outputs = net(graphs, feat) _, predicted = torch.max(outputs.data, 1) total_correct += (predicted == labels.data).sum().item() loss = criterion(outputs, labels) # crossentropy(reduce=True) for default total_loss += loss.item() * len(labels) loss, acc = 1.0*total_loss / total, 1.0*total_correct / total net.train() return loss, acc def main(args): # set up seeds, args.seed supported torch.manual_seed(seed=args.seed) np.random.seed(seed=args.seed) is_cuda = not args.disable_cuda and torch.cuda.is_available() if is_cuda: args.device = torch.device("cuda:" + str(args.device)) torch.cuda.manual_seed_all(seed=args.seed) else: args.device = torch.device("cpu") dataset = GINDataset(args.dataset, not args.learn_eps, args.degree_as_nlabel) trainloader, validloader = GINDataLoader( dataset, batch_size=args.batch_size, device=args.device, seed=args.seed, shuffle=True, split_name='fold10', fold_idx=args.fold_idx).train_valid_loader() # or split_name='rand', split_ratio=0.7 model = GIN( args.num_layers, args.num_mlp_layers, dataset.dim_nfeats, args.hidden_dim, dataset.gclasses, args.final_dropout, args.learn_eps, args.graph_pooling_type, args.neighbor_pooling_type).to(args.device) criterion = nn.CrossEntropyLoss() # defaul reduce is true optimizer = optim.Adam(model.parameters(), lr=args.lr) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.5) # it's not cost-effective to hanle the cursor and init 0 # https://stackoverflow.com/a/23121189 tbar = tqdm(range(args.epochs), unit="epoch", position=3, ncols=0, file=sys.stdout) vbar = tqdm(range(args.epochs), unit="epoch", position=4, ncols=0, file=sys.stdout) lrbar = tqdm(range(args.epochs), unit="epoch", position=5, ncols=0, file=sys.stdout) for epoch, _, _ in zip(tbar, vbar, lrbar): train(args, model, trainloader, optimizer, criterion, epoch) scheduler.step() train_loss, train_acc = eval_net( args, model, trainloader, criterion) tbar.set_description( 'train set - average loss: {:.4f}, accuracy: {:.0f}%' .format(train_loss, 100. * train_acc)) valid_loss, valid_acc = eval_net( args, model, validloader, criterion) vbar.set_description( 'valid set - average loss: {:.4f}, accuracy: {:.0f}%' .format(valid_loss, 100. * valid_acc)) if not args.filename == "": with open(args.filename, 'a') as f: f.write('%s %s %s %s %s' % ( args.dataset, args.learn_eps, args.neighbor_pooling_type, args.graph_pooling_type, epoch )) f.write("\n") f.write("%f %f %f %f" % ( train_loss, train_acc, valid_loss, valid_acc )) f.write("\n") lrbar.set_description( "Learning eps with learn_eps={}: {}".format( args.learn_eps, [layer.eps.data.item() for layer in model.ginlayers])) tbar.close() vbar.close() lrbar.close() if __name__ == '__main__': args = Parser(description='GIN').args print('show all arguments configuration...') print(args) main(args)