""" PyTorch compatible dataloader """ import math import numpy as np import torch from torch.utils.data.sampler import SubsetRandomSampler from sklearn.model_selection import StratifiedKFold import dgl from dgl.dataloading import GraphDataLoader class GINDataLoader(): def __init__(self, dataset, batch_size, device, collate_fn=None, seed=0, shuffle=True, split_name='fold10', fold_idx=0, split_ratio=0.7): self.shuffle = shuffle self.seed = seed self.kwargs = {'pin_memory': True} if 'cuda' in device.type else {} labels = [l for _, l in dataset] if split_name == 'fold10': train_idx, valid_idx = self._split_fold10( labels, fold_idx, seed, shuffle) elif split_name == 'rand': train_idx, valid_idx = self._split_rand( labels, split_ratio, seed, shuffle) else: raise NotImplementedError() train_sampler = SubsetRandomSampler(train_idx) valid_sampler = SubsetRandomSampler(valid_idx) self.train_loader = GraphDataLoader( dataset, sampler=train_sampler, batch_size=batch_size, collate_fn=collate_fn, **self.kwargs) self.valid_loader = GraphDataLoader( dataset, sampler=valid_sampler, batch_size=batch_size, collate_fn=collate_fn, **self.kwargs) def train_valid_loader(self): return self.train_loader, self.valid_loader def _split_fold10(self, labels, fold_idx=0, seed=0, shuffle=True): ''' 10 flod ''' assert 0 <= fold_idx and fold_idx < 10, print( "fold_idx must be from 0 to 9.") skf = StratifiedKFold(n_splits=10, shuffle=shuffle, random_state=seed) idx_list = [] for idx in skf.split(np.zeros(len(labels)), labels): # split(x, y) idx_list.append(idx) train_idx, valid_idx = idx_list[fold_idx] print( "train_set : test_set = %d : %d", len(train_idx), len(valid_idx)) return train_idx, valid_idx def _split_rand(self, labels, split_ratio=0.7, seed=0, shuffle=True): num_entries = len(labels) indices = list(range(num_entries)) np.random.seed(seed) np.random.shuffle(indices) split = int(math.floor(split_ratio * num_entries)) train_idx, valid_idx = indices[:split], indices[split:] print( "train_set : test_set = %d : %d", len(train_idx), len(valid_idx)) return train_idx, valid_idx