import dgl import random import torch import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from load_data import * from utils import * from model import * from sensors2graph import * import torch.nn as nn import argparse import scipy.sparse as sp parser = argparse.ArgumentParser(description='STGCN_WAVE') parser.add_argument('--lr', default=0.001, type=float, help='learning rate') parser.add_argument('--disablecuda', action='store_true', help='Disable CUDA') parser.add_argument('--batch_size', type=int, default=50, help='batch size for training and validation (default: 50)') parser.add_argument('--epochs', type=int, default=50, help='epochs for training (default: 50)') parser.add_argument('--num_layers', type=int, default=9, help='number of layers') parser.add_argument('--window', type=int, default=144, help='window length') parser.add_argument('--sensorsfilepath', type=str, default='./data/sensor_graph/graph_sensor_ids.txt', help='sensors file path') parser.add_argument('--disfilepath', type=str, default='./data/sensor_graph/distances_la_2012.csv', help='distance file path') parser.add_argument('--tsfilepath', type=str, default='./data/metr-la.h5', help='ts file path') parser.add_argument('--savemodelpath', type=str, default='stgcnwavemodel.pt', help='save model path') parser.add_argument('--pred_len', type=int, default=5, help='how many steps away we want to predict') parser.add_argument('--control_str', type=str, default='TNTSTNTST', help='model strcture controller, T: Temporal Layer, S: Spatio Layer, N: Norm Layer') parser.add_argument('--channels', type=int, nargs='+', default=[1, 16, 32, 64, 32, 128], help='model strcture controller, T: Temporal Layer, S: Spatio Layer, N: Norm Layer') args = parser.parse_args() device = torch.device("cuda") if torch.cuda.is_available() and not args.disablecuda else torch.device("cpu") with open(args.sensorsfilepath) as f: sensor_ids = f.read().strip().split(',') distance_df = pd.read_csv(args.disfilepath, dtype={'from': 'str', 'to': 'str'}) adj_mx = get_adjacency_matrix(distance_df, sensor_ids) sp_mx = sp.coo_matrix(adj_mx) G = dgl.from_scipy(sp_mx) df = pd.read_hdf(args.tsfilepath) num_samples, num_nodes = df.shape tsdata = df.to_numpy() n_his = args.window save_path = args.savemodelpath n_pred = args.pred_len n_route = num_nodes blocks = args.channels # blocks = [1, 16, 32, 64, 32, 128] drop_prob = 0 num_layers = args.num_layers batch_size = args.batch_size epochs = args.epochs lr = args.lr W = adj_mx len_val = round(num_samples * 0.1) len_train = round(num_samples * 0.7) train = df[: len_train] val = df[len_train: len_train + len_val] test = df[len_train + len_val:] scaler = StandardScaler() train = scaler.fit_transform(train) val = scaler.transform(val) test = scaler.transform(test) x_train, y_train = data_transform(train, n_his, n_pred, device) x_val, y_val = data_transform(val, n_his, n_pred, device) x_test, y_test = data_transform(test, n_his, n_pred, device) train_data = torch.utils.data.TensorDataset(x_train, y_train) train_iter = torch.utils.data.DataLoader(train_data, batch_size, shuffle=True) val_data = torch.utils.data.TensorDataset(x_val, y_val) val_iter = torch.utils.data.DataLoader(val_data, batch_size) test_data = torch.utils.data.TensorDataset(x_test, y_test) test_iter = torch.utils.data.DataLoader(test_data, batch_size) loss = nn.MSELoss() G = G.to(device) model = STGCN_WAVE(blocks, n_his, n_route, G, drop_prob, num_layers, device, args.control_str).to(device) optimizer = torch.optim.RMSprop(model.parameters(), lr=lr) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.7) min_val_loss = np.inf for epoch in range(1, epochs + 1): l_sum, n = 0.0, 0 model.train() for x, y in train_iter: y_pred = model(x).view(len(x), -1) l = loss(y_pred, y) optimizer.zero_grad() l.backward() optimizer.step() l_sum += l.item() * y.shape[0] n += y.shape[0] scheduler.step() val_loss = evaluate_model(model, loss, val_iter) if val_loss < min_val_loss: min_val_loss = val_loss torch.save(model.state_dict(), save_path) print("epoch", epoch, ", train loss:", l_sum / n, ", validation loss:", val_loss) best_model = STGCN_WAVE(blocks, n_his, n_route, G, drop_prob, num_layers).to(device) best_model.load_state_dict(torch.load(save_path)) l = evaluate_model(best_model, loss, test_iter) MAE, MAPE, RMSE = evaluate_metric(best_model, test_iter, scaler) print("test loss:", l, "\nMAE:", MAE, ", MAPE:", MAPE, ", RMSE:", RMSE)