/*! * Copyright (c) 2020 by Contributors * \file array/cpu/spmm.h * \brief SPMM CPU kernel function header. */ #ifndef DGL_ARRAY_CPU_SPMM_H_ #define DGL_ARRAY_CPU_SPMM_H_ #include #include #include #include #include #include "spmm_binary_ops.h" #if !defined(_WIN32) #ifdef USE_AVX #include "intel/cpu_support.h" #endif // USE_AVX #endif // _WIN32 namespace dgl { namespace aten { namespace cpu { /*! * \brief CPU kernel of SpMM on Csr format. * \param bcast Broadcast information. * \param csr The Csr matrix. * \param ufeat The feature on source nodes. * \param efeat The feature on edges. * \param out The result feature on destination nodes. * \note it uses node parallel strategy, different threads are responsible * for the computation of different nodes. */ template void SpMMSumCsr(const BcastOff& bcast, const CSRMatrix& csr, NDArray ufeat, NDArray efeat, NDArray out) { const bool has_idx = !IsNullArray(csr.data); const IdType* indptr = csr.indptr.Ptr(); const IdType* indices = csr.indices.Ptr(); const IdType* edges = csr.data.Ptr(); const DType* X = ufeat.Ptr(); const DType* W = efeat.Ptr(); int64_t dim = bcast.out_len, lhs_dim = bcast.lhs_len, rhs_dim = bcast.rhs_len; DType* O = out.Ptr(); #if !defined(_WIN32) #ifdef USE_AVX typedef dgl::ElemWiseAddUpdate ElemWiseUpd; /* Prepare an assembler kernel */ static std::unique_ptr asm_kernel_ptr( (dgl::IntelKernel<>::IsEnabled()) ? new ElemWiseUpd() : nullptr); /* Distribute the kernel among OMP threads */ ElemWiseUpd* cpu_spec = (asm_kernel_ptr && asm_kernel_ptr->applicable()) ? asm_kernel_ptr.get() : nullptr; if (cpu_spec && dim > 16 && !bcast.use_bcast) { #pragma omp parallel for for (IdType rid = 0; rid < csr.num_rows; ++rid) { const IdType row_start = indptr[rid], row_end = indptr[rid + 1]; DType* out_off = O + rid * dim; for (IdType j = row_start; j < row_end; ++j) { const IdType cid = indices[j]; const IdType eid = has_idx ? edges[j] : j; cpu_spec->run(out_off, X + cid * lhs_dim, W + eid * rhs_dim, dim); } } } else { #endif // USE_AVX #endif // _WIN32 #pragma omp parallel for for (IdType rid = 0; rid < csr.num_rows; ++rid) { const IdType row_start = indptr[rid], row_end = indptr[rid + 1]; DType* out_off = O + rid * dim; for (IdType j = row_start; j < row_end; ++j) { const IdType cid = indices[j]; const IdType eid = has_idx ? edges[j] : j; for (int64_t k = 0; k < dim; ++k) { const int64_t lhs_add = bcast.use_bcast ? bcast.lhs_offset[k] : k; const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k; const DType* lhs_off = Op::use_lhs ? X + cid * lhs_dim + lhs_add : nullptr; const DType* rhs_off = Op::use_rhs ? W + eid * rhs_dim + rhs_add : nullptr; out_off[k] += Op::Call(lhs_off, rhs_off); } } } #if !defined(_WIN32) #ifdef USE_AVX } #endif // USE_AVX #endif // _WIN32 } /*! * \brief CPU kernel of SpMM on Coo format. * \param bcast Broadcast information. * \param coo The Coo matrix. * \param ufeat The feature on source nodes. * \param efeat The feature on edges. * \param out The result feature on destination nodes. * \note it uses node parallel strategy, different threads are responsible * for the computation of different nodes. To avoid possible data hazard, * we use atomic operators in the reduction phase. */ template void SpMMSumCoo(const BcastOff& bcast, const COOMatrix& coo, NDArray ufeat, NDArray efeat, NDArray out) { const bool has_idx = !IsNullArray(coo.data); const IdType* row = coo.row.Ptr(); const IdType* col = coo.col.Ptr(); const IdType* edges = coo.data.Ptr(); const DType* X = ufeat.Ptr(); const DType* W = efeat.Ptr(); int64_t dim = bcast.out_len, lhs_dim = bcast.lhs_len, rhs_dim = bcast.rhs_len; DType* O = out.Ptr(); const int64_t nnz = coo.row->shape[0]; // fill zero elements memset(O, 0, out.GetSize()); // spmm #pragma omp parallel for for (IdType i = 0; i < nnz; ++i) { const IdType rid = row[i]; const IdType cid = col[i]; const IdType eid = has_idx ? edges[i] : i; DType* out_off = O + cid * dim; for (int64_t k = 0; k < dim; ++k) { const int64_t lhs_add = bcast.use_bcast ? bcast.lhs_offset[k] : k; const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k; const DType* lhs_off = Op::use_lhs ? X + rid * lhs_dim + lhs_add : nullptr; const DType* rhs_off = Op::use_rhs ? W + eid * rhs_dim + rhs_add : nullptr; const DType val = Op::Call(lhs_off, rhs_off); if (val != 0) { #pragma omp atomic out_off[k] += val; } } } } /*! * \brief CPU kernel of SpMM-Min/Max on Csr format. * \param bcast Broadcast information. * \param csr The Csr matrix. * \param ufeat The feature on source nodes. * \param efeat The feature on edges. * \param out The result feature on destination nodes. * \param argu Arg-Min/Max on source nodes, which refers the source node indices * correspond to the minimum/maximum values of reduction result on * destination nodes. It's useful in computing gradients of Min/Max * reducer. \param arge Arg-Min/Max on edges. which refers the source node * indices correspond to the minimum/maximum values of reduction result on * destination nodes. It's useful in computing gradients of Min/Max * reducer. \note It uses node parallel strategy, different threads are * responsible for the computation of different nodes. \note The result will * contain infinity for zero-degree nodes. */ template void SpMMCmpCsr(const BcastOff& bcast, const CSRMatrix& csr, NDArray ufeat, NDArray efeat, NDArray out, NDArray argu, NDArray arge) { const bool has_idx = !IsNullArray(csr.data); const IdType* indptr = static_cast(csr.indptr->data); const IdType* indices = static_cast(csr.indices->data); const IdType* edges = has_idx ? static_cast(csr.data->data) : nullptr; const DType* X = Op::use_lhs ? static_cast(ufeat->data) : nullptr; const DType* W = Op::use_rhs ? static_cast(efeat->data) : nullptr; const int64_t dim = bcast.out_len, lhs_dim = bcast.lhs_len, rhs_dim = bcast.rhs_len; DType* O = static_cast(out->data); IdType* argX = Op::use_lhs ? static_cast(argu->data) : nullptr; IdType* argW = Op::use_rhs ? static_cast(arge->data) : nullptr; #pragma omp parallel for for (IdType rid = 0; rid < csr.num_rows; ++rid) { const IdType row_start = indptr[rid], row_end = indptr[rid + 1]; DType* out_off = O + rid * dim; IdType* argx_off = argX + rid * dim; IdType* argw_off = argW + rid * dim; for (IdType j = row_start; j < row_end; ++j) { const IdType cid = indices[j]; const IdType eid = has_idx ? edges[j] : j; for (int64_t k = 0; k < dim; ++k) { const int64_t lhs_add = bcast.use_bcast ? bcast.lhs_offset[k] : k; const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k; const DType* lhs_off = Op::use_lhs ? X + cid * lhs_dim + lhs_add : nullptr; const DType* rhs_off = Op::use_rhs ? W + eid * rhs_dim + rhs_add : nullptr; const DType val = Op::Call(lhs_off, rhs_off); if (Cmp::Call(out_off[k], val)) { out_off[k] = val; if (Op::use_lhs) argx_off[k] = cid; if (Op::use_rhs) argw_off[k] = eid; } } } } } /*! * \brief CPU kernel of SpMM-Min/Max on Coo format. * \param bcast Broadcast information. * \param coo The Coo matrix. * \param ufeat The feature on source nodes. * \param efeat The feature on edges. * \param out The result feature on destination nodes. * \param argu Arg-Min/Max on source nodes, which refers the source node indices * correspond to the minimum/maximum values of reduction result on * destination nodes. It's useful in computing gradients of Min/Max * reducer. \param arge Arg-Min/Max on edges. which refers the source node * indices correspond to the minimum/maximum values of reduction result on * destination nodes. It's useful in computing gradients of Min/Max * reducer. \note it uses node parallel strategy, different threads are * responsible for the computation of different nodes. To avoid possible data * hazard, we use atomic operators in the reduction phase. \note The result will * contain infinity for zero-degree nodes. */ template void SpMMCmpCoo(const BcastOff& bcast, const COOMatrix& coo, NDArray ufeat, NDArray efeat, NDArray out, NDArray argu, NDArray arge) { const bool has_idx = !IsNullArray(coo.data); const IdType* row = static_cast(coo.row->data); const IdType* col = static_cast(coo.col->data); const IdType* edges = has_idx ? static_cast(coo.data->data) : nullptr; const DType* X = Op::use_lhs ? static_cast(ufeat->data) : nullptr; const DType* W = Op::use_rhs ? static_cast(efeat->data) : nullptr; const int64_t dim = bcast.out_len, lhs_dim = bcast.lhs_len, rhs_dim = bcast.rhs_len; DType* O = static_cast(out->data); IdType* argX = Op::use_lhs ? static_cast(argu->data) : nullptr; IdType* argW = Op::use_rhs ? static_cast(arge->data) : nullptr; const int64_t nnz = coo.row->shape[0]; // fill zero elements std::fill(O, O + out.NumElements(), Cmp::zero); // spmm #pragma omp parallel for for (IdType i = 0; i < nnz; ++i) { const IdType rid = row[i]; const IdType cid = col[i]; const IdType eid = has_idx ? edges[i] : i; DType* out_off = O + cid * dim; IdType* argx_off = Op::use_lhs ? argX + cid * dim : nullptr; IdType* argw_off = Op::use_rhs ? argW + cid * dim : nullptr; for (int64_t k = 0; k < dim; ++k) { const int64_t lhs_add = bcast.use_bcast ? bcast.lhs_offset[k] : k; const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k; const DType* lhs_off = Op::use_lhs ? X + rid * lhs_dim + lhs_add : nullptr; const DType* rhs_off = Op::use_rhs ? W + eid * rhs_dim + rhs_add : nullptr; const DType val = Op::Call(lhs_off, rhs_off); #pragma omp critical if (Cmp::Call(out_off[k], val)) { out_off[k] = val; if (Op::use_lhs) argx_off[k] = rid; if (Op::use_rhs) argw_off[k] = eid; } } } } } // namespace cpu } // namespace aten } // namespace dgl #endif // DGL_ARRAY_CPU_SPMM_H_