# DGL Implementation of DeeperGCN This DGL example implements the GNN model proposed in the paper [DeeperGCN: All You Need to Train Deeper GCNs](https://arxiv.org/abs/2006.07739). For the original implementation, see [here](https://github.com/lightaime/deep_gcns_torch). Contributor: [xnuohz](https://github.com/xnuohz) ### Requirements The codebase is implemented in Python 3.7. For version requirement of packages, see below. ``` dgl 0.6.0.post1 torch 1.7.0 ogb 1.3.0 ``` ### The graph datasets used in this example Open Graph Benchmark(OGB). Dataset summary: ###### Graph Property Prediction | Dataset | #Graphs | #Node Feats | #Edge Feats | Metric | | :---------: | :-----: | :---------: | :---------: | :-----: | | ogbg-molhiv | 41,127 | 9 | 3 | ROC-AUC | ### Usage Train a model which follows the original hyperparameters on different datasets. ```bash # ogbg-molhiv python main.py --gpu 0 --learn-beta ``` ### Performance * Table 6: Numbers associated with "Table 6" are the ones from table 6 in the paper. * Author: Numbers associated with "Author" are the ones we got by running the original code. * DGL: Numbers associated with "DGL" are the ones we got by running the DGL example. | Dataset | ogbg-molhiv | | :--------------: | :---------: | | Results(Table 6) | 0.786 | | Results(Author) | 0.781 | | Results(DGL) | 0.778 | ### Speed | Dataset | ogbg-molhiv | | :-------------: | :---------: | | Results(Author) | 11.833 | | Results(DGL) | 8.965 |