Graph Attention Networks (GAT) ============ - Paper link: [https://arxiv.org/abs/1710.10903](https://arxiv.org/abs/1710.10903) - Author's code repo (in Tensorflow): [https://github.com/PetarV-/GAT](https://github.com/PetarV-/GAT). - Popular pytorch implementation: [https://github.com/Diego999/pyGAT](https://github.com/Diego999/pyGAT). Dependencies ------------ - torch v1.0: the autograd support for sparse mm is only available in v1.0. - requests - sklearn ```bash pip install torch==1.0.0 requests ``` How to run ---------- Run with following: ```bash python3 train.py --dataset=cora --gpu=0 ``` ```bash python3 train.py --dataset=citeseer --gpu=0 ``` ```bash python3 train.py --dataset=pubmed --gpu=0 --num-out-heads=8 --weight-decay=0.001 ``` ```bash python3 train_ppi.py --gpu=0 ``` Results ------- | Dataset | Test Accuracy | Time(s) | Baseline#1 times(s) | Baseline#2 times(s) | | ------- | ------------- | ------- | ------------------- | ------------------- | | Cora | 84.0% | 0.0113 | 0.0982 (**8.7x**) | 0.0424 (**3.8x**) | | Citeseer | 70.7% | 0.0111 | n/a | n/a | | Pubmed | 78.0% | 0.0115 | n/a | n/a | * All the accuracy numbers are obtained after 300 epochs. * The time measures how long it takes to train one epoch. * All time is measured on EC2 p3.2xlarge instance w/ V100 GPU. * Baseline#1: [https://github.com/PetarV-/GAT](https://github.com/PetarV-/GAT). * Baseline#2: [https://github.com/Diego999/pyGAT](https://github.com/Diego999/pyGAT).