""" Graph Attention Networks in DGL using SPMV optimization. Multiple heads are also batched together for faster training. Compared with the original paper, this code does not implement early stopping. References ---------- Paper: https://arxiv.org/abs/1710.10903 Author's code: https://github.com/PetarV-/GAT Pytorch implementation: https://github.com/Diego999/pyGAT """ import argparse import time import mxnet as mx from mxnet import gluon import numpy as np from dgl import DGLGraph from dgl.data import register_data_args, load_data from gat import GAT def elu(data): return mx.nd.LeakyReLU(data, act_type='elu') def evaluate(model, features, labels, mask): logits = model(features) logits = logits[mask].asnumpy().squeeze() val_labels = labels[mask].asnumpy().squeeze() max_index = np.argmax(logits, axis=1) accuracy = np.sum(np.where(max_index == val_labels, 1, 0)) / len(val_labels) return accuracy def main(args): # load and preprocess dataset data = load_data(args) features = mx.nd.array(data.features) labels = mx.nd.array(data.labels) mask = mx.nd.array(np.where(data.train_mask == 1)) test_mask = mx.nd.array(np.where(data.test_mask == 1)) val_mask = mx.nd.array(np.where(data.val_mask == 1)) in_feats = features.shape[1] n_classes = data.num_labels n_edges = data.graph.number_of_edges() if args.gpu < 0: ctx = mx.cpu() else: ctx = mx.gpu(args.gpu) features = features.as_in_context(ctx) labels = labels.as_in_context(ctx) mask = mask.as_in_context(ctx) test_mask = test_mask.as_in_context(ctx) val_mask = val_mask.as_in_context(ctx) # create graph g = data.graph # add self-loop g.remove_edges_from(g.selfloop_edges()) g = DGLGraph(g) g.add_edges(g.nodes(), g.nodes()) # create model heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads] model = GAT(g, args.num_layers, in_feats, args.num_hidden, n_classes, heads, elu, args.in_drop, args.attn_drop, args.alpha, args.residual) model.initialize(ctx=ctx) # use optimizer trainer = gluon.Trainer(model.collect_params(), 'adam', {'learning_rate': args.lr}) dur = [] for epoch in range(args.epochs): if epoch >= 3: t0 = time.time() # forward with mx.autograd.record(): logits = model(features) loss = mx.nd.softmax_cross_entropy(logits[mask].squeeze(), labels[mask].squeeze()) loss.backward() trainer.step(mask.shape[0]) if epoch >= 3: dur.append(time.time() - t0) print("Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f} | ETputs(KTEPS) {:.2f}".format( epoch, loss.asnumpy()[0], np.mean(dur), n_edges / np.mean(dur) / 1000)) if epoch % 100 == 0: val_accuracy = evaluate(model, features, labels, val_mask) print("Validation Accuracy {:.4f}".format(val_accuracy)) test_accuracy = evaluate(model, features, labels, test_mask) print("Test Accuracy {:.4f}".format(test_accuracy)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='GAT') register_data_args(parser) parser.add_argument("--gpu", type=int, default=-1, help="which GPU to use. Set -1 to use CPU.") parser.add_argument("--epochs", type=int, default=200, help="number of training epochs") parser.add_argument("--num-heads", type=int, default=8, help="number of hidden attention heads") parser.add_argument("--num-out-heads", type=int, default=1, help="number of output attention heads") parser.add_argument("--num-layers", type=int, default=1, help="number of hidden layers") parser.add_argument("--num-hidden", type=int, default=8, help="number of hidden units") parser.add_argument("--residual", action="store_true", default=False, help="use residual connection") parser.add_argument("--in-drop", type=float, default=.6, help="input feature dropout") parser.add_argument("--attn-drop", type=float, default=.6, help="attention dropout") parser.add_argument("--lr", type=float, default=0.005, help="learning rate") parser.add_argument('--weight-decay', type=float, default=5e-4, help="weight decay") parser.add_argument('--alpha', type=float, default=0.2, help="the negative slop of leaky relu") args = parser.parse_args() print(args) main(args)