import torch.nn as nn import torch.nn.functional as function from dgl.nn import GraphConv, SumPooling class EEGGraphConvNet(nn.Module): """ EEGGraph Convolution Net Parameters ---------- num_feats: the number of features per node. In our case, it is 6. """ def __init__(self, num_feats): super(EEGGraphConvNet, self).__init__() self.conv1 = GraphConv(num_feats, 32) self.conv2 = GraphConv(32, 20) self.conv2_bn = nn.BatchNorm1d(20, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.fc_block1 = nn.Linear(20, 10) self.fc_block2 = nn.Linear(10, 2) # Xavier initializations self.fc_block1.apply(lambda x: nn.init.xavier_normal_(x.weight, gain=1)) self.fc_block2.apply(lambda x: nn.init.xavier_normal_(x.weight, gain=1)) def forward(self, g, return_graph_embedding=False): x = g.ndata['x'] edge_weight = g.edata['edge_weights'] x = function.leaky_relu(self.conv1(g, x, edge_weight=edge_weight)) x = function.leaky_relu(self.conv2_bn(self.conv2(g, x, edge_weight=edge_weight))) # NOTE: this takes node-level features/"embeddings" # and aggregates to graph-level - use for graph-level classification sumpool = SumPooling() out = sumpool(g, x) if return_graph_embedding: return out out = function.dropout(out, p=0.2, training=self.training) out = self.fc_block1(out) out = function.leaky_relu(out) out = self.fc_block2(out) return out