"""Infering Relational Data with Graph Convolutional Networks """ import argparse from functools import partial import torch as th import torch.nn.functional as F from dgl.data.rdf import AIFB, AM, BGS, MUTAG from entity_classify import EntityClassify def main(args): # load graph data if args.dataset == "aifb": dataset = AIFBDataset() elif args.dataset == "mutag": dataset = MUTAGDataset() elif args.dataset == "bgs": dataset = BGSDataset() elif args.dataset == "am": dataset = AMDataset() else: raise ValueError() g = dataset[0] category = dataset.predict_category num_classes = dataset.num_classes test_mask = g.nodes[category].data.pop("test_mask") test_idx = th.nonzero(test_mask, as_tuple=False).squeeze() labels = g.nodes[category].data.pop("labels") # check cuda use_cuda = args.gpu >= 0 and th.cuda.is_available() if use_cuda: th.cuda.set_device(args.gpu) labels = labels.cuda() test_idx = test_idx.cuda() g = g.to("cuda:%d" % args.gpu) # create model model = EntityClassify( g, args.n_hidden, num_classes, num_bases=args.n_bases, num_hidden_layers=args.n_layers - 2, use_self_loop=args.use_self_loop, ) model.load_state_dict(th.load(args.model_path)) if use_cuda: model.cuda() print("start testing...") model.eval() logits = model.forward()[category] test_loss = F.cross_entropy(logits[test_idx], labels[test_idx]) test_acc = th.sum( logits[test_idx].argmax(dim=1) == labels[test_idx] ).item() / len(test_idx) print( "Test Acc: {:.4f} | Test loss: {:.4f}".format( test_acc, test_loss.item() ) ) print() if __name__ == "__main__": parser = argparse.ArgumentParser(description="RGCN") parser.add_argument( "--n-hidden", type=int, default=16, help="number of hidden units" ) parser.add_argument("--gpu", type=int, default=-1, help="gpu") parser.add_argument("--lr", type=float, default=1e-2, help="learning rate") parser.add_argument( "--n-bases", type=int, default=-1, help="number of filter weight matrices, default: -1 [use all]", ) parser.add_argument( "--n-layers", type=int, default=2, help="number of propagation rounds" ) parser.add_argument( "-d", "--dataset", type=str, required=True, help="dataset to use" ) parser.add_argument( "--model_path", type=str, help="path of the model to load from" ) parser.add_argument( "--use-self-loop", default=False, action="store_true", help="include self feature as a special relation", ) args = parser.parse_args() print(args) main(args)