import dgl import torch from dgl.data import CiteseerGraphDataset, CoraGraphDataset def load_data(args): if args.dataset == "cora": data = CoraGraphDataset() elif args.dataset == "citeseer": data = CiteseerGraphDataset() else: raise ValueError("Unknown dataset: {}".format(args.dataset)) g = data[0] if args.gpu < 0: cuda = False else: cuda = True g = g.int().to(args.gpu) features = g.ndata["feat"] labels = g.ndata["label"] train_mask = g.ndata["train_mask"] test_mask = g.ndata["test_mask"] g = dgl.add_self_loop(g) return g, features, labels, train_mask, test_mask, data.num_classes, cuda def svd_feature(features, d=200): """Get 200-dimensional node features, to avoid curse of dimensionality""" if features.shape[1] <= d: return features U, S, VT = torch.svd(features) res = torch.mm(U[:, 0:d], torch.diag(S[0:d])) return res def process_classids(labels_temp): """Reorder the remaining classes with unseen classes removed. Input: the label only removing unseen classes Output: the label with reordered classes """ labeldict = {} num = 0 for i in labels_temp: labeldict[int(i)] = 1 labellist = sorted(labeldict) for label in labellist: labeldict[int(label)] = num num = num + 1 for i in range(labels_temp.numel()): labels_temp[i] = labeldict[int(labels_temp[i])] return labels_temp