import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init """ u_embedding: Embedding for center word. v_embedding: Embedding for neighbor words. """ class SkipGramModel(nn.Module): def __init__(self, emb_size, emb_dimension): super(SkipGramModel, self).__init__() self.emb_size = emb_size self.emb_dimension = emb_dimension self.u_embeddings = nn.Embedding(emb_size, emb_dimension, sparse=True) self.v_embeddings = nn.Embedding(emb_size, emb_dimension, sparse=True) initrange = 1.0 / self.emb_dimension init.uniform_(self.u_embeddings.weight.data, -initrange, initrange) init.constant_(self.v_embeddings.weight.data, 0) def forward(self, pos_u, pos_v, neg_v): emb_u = self.u_embeddings(pos_u) emb_v = self.v_embeddings(pos_v) emb_neg_v = self.v_embeddings(neg_v) score = torch.sum(torch.mul(emb_u, emb_v), dim=1) score = torch.clamp(score, max=10, min=-10) score = -F.logsigmoid(score) neg_score = torch.bmm(emb_neg_v, emb_u.unsqueeze(2)).squeeze() neg_score = torch.clamp(neg_score, max=10, min=-10) neg_score = -torch.sum(F.logsigmoid(-neg_score), dim=1) return torch.mean(score + neg_score) def save_embedding(self, id2word, file_name): embedding = self.u_embeddings.weight.cpu().data.numpy() with open(file_name, "w") as f: f.write("%d %d\n" % (len(id2word), self.emb_dimension)) for wid, w in id2word.items(): e = " ".join(map(lambda x: str(x), embedding[wid])) f.write("%s %s\n" % (w, e))