"""This model shows an example of using dgl.metapath_reachable_graph on the original heterogeneous graph. Because the original HAN implementation only gives the preprocessed homogeneous graph, this model could not reproduce the result in HAN as they did not provide the preprocessing code, and we constructed another dataset from ACM with a different set of papers, connections, features and labels. """ import dgl import torch import torch.nn as nn import torch.nn.functional as F from dgl.nn.pytorch import GATConv class SemanticAttention(nn.Module): def __init__(self, in_size, hidden_size=128): super(SemanticAttention, self).__init__() self.project = nn.Sequential( nn.Linear(in_size, hidden_size), nn.Tanh(), nn.Linear(hidden_size, 1, bias=False), ) def forward(self, z): w = self.project(z).mean(0) # (M, 1) beta = torch.softmax(w, dim=0) # (M, 1) beta = beta.expand((z.shape[0],) + beta.shape) # (N, M, 1) return (beta * z).sum(1) # (N, D * K) class HANLayer(nn.Module): """ HAN layer. Arguments --------- meta_paths : list of metapaths, each as a list of edge types in_size : input feature dimension out_size : output feature dimension layer_num_heads : number of attention heads dropout : Dropout probability Inputs ------ g : DGLGraph The heterogeneous graph h : tensor Input features Outputs ------- tensor The output feature """ def __init__(self, meta_paths, in_size, out_size, layer_num_heads, dropout): super(HANLayer, self).__init__() # One GAT layer for each meta path based adjacency matrix self.gat_layers = nn.ModuleList() for i in range(len(meta_paths)): self.gat_layers.append( GATConv( in_size, out_size, layer_num_heads, dropout, dropout, activation=F.elu, allow_zero_in_degree=True, ) ) self.semantic_attention = SemanticAttention( in_size=out_size * layer_num_heads ) self.meta_paths = list(tuple(meta_path) for meta_path in meta_paths) self._cached_graph = None self._cached_coalesced_graph = {} def forward(self, g, h): semantic_embeddings = [] if self._cached_graph is None or self._cached_graph is not g: self._cached_graph = g self._cached_coalesced_graph.clear() for meta_path in self.meta_paths: self._cached_coalesced_graph[ meta_path ] = dgl.metapath_reachable_graph(g, meta_path) for i, meta_path in enumerate(self.meta_paths): new_g = self._cached_coalesced_graph[meta_path] semantic_embeddings.append(self.gat_layers[i](new_g, h).flatten(1)) semantic_embeddings = torch.stack( semantic_embeddings, dim=1 ) # (N, M, D * K) return self.semantic_attention(semantic_embeddings) # (N, D * K) class HAN(nn.Module): def __init__( self, meta_paths, in_size, hidden_size, out_size, num_heads, dropout ): super(HAN, self).__init__() self.layers = nn.ModuleList() self.layers.append( HANLayer(meta_paths, in_size, hidden_size, num_heads[0], dropout) ) for l in range(1, len(num_heads)): self.layers.append( HANLayer( meta_paths, hidden_size * num_heads[l - 1], hidden_size, num_heads[l], dropout, ) ) self.predict = nn.Linear(hidden_size * num_heads[-1], out_size) def forward(self, g, h): for gnn in self.layers: h = gnn(g, h) return self.predict(h)