import torch.nn as nn import torch.nn.functional as function from dgl.nn import GraphConv, SumPooling from torch.nn import BatchNorm1d class EEGGraphConvNet(nn.Module): """EEGGraph Convolution Net Parameters ---------- num_feats: the number of features per node. In our case, it is 6. """ def __init__(self, num_feats): super(EEGGraphConvNet, self).__init__() self.conv1 = GraphConv(num_feats, 16) self.conv2 = GraphConv(16, 32) self.conv3 = GraphConv(32, 64) self.conv4 = GraphConv(64, 50) self.conv4_bn = BatchNorm1d( 50, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True ) self.fc_block1 = nn.Linear(50, 30) self.fc_block2 = nn.Linear(30, 10) self.fc_block3 = nn.Linear(10, 2) # Xavier initializations self.fc_block1.apply(lambda x: nn.init.xavier_normal_(x.weight, gain=1)) self.fc_block2.apply(lambda x: nn.init.xavier_normal_(x.weight, gain=1)) self.fc_block3.apply(lambda x: nn.init.xavier_normal_(x.weight, gain=1)) self.sumpool = SumPooling() def forward(self, g, return_graph_embedding=False): x = g.ndata["x"] edge_weight = g.edata["edge_weights"] x = self.conv1(g, x, edge_weight=edge_weight) x = function.leaky_relu(x, negative_slope=0.01) x = function.dropout(x, p=0.2, training=self.training) x = self.conv2(g, x, edge_weight=edge_weight) x = function.leaky_relu(x, negative_slope=0.01) x = function.dropout(x, p=0.2, training=self.training) x = self.conv3(g, x, edge_weight=edge_weight) x = function.leaky_relu(x, negative_slope=0.01) x = function.dropout(x, p=0.2, training=self.training) x = self.conv4(g, x, edge_weight=edge_weight) x = self.conv4_bn(x) x = function.leaky_relu(x, negative_slope=0.01) x = function.dropout(x, p=0.2, training=self.training) # NOTE: this takes node-level features/"embeddings" # and aggregates to graph-level - use for graph-level classification out = self.sumpool(g, x) if return_graph_embedding: return out out = function.leaky_relu(self.fc_block1(out), negative_slope=0.1) out = function.dropout(out, p=0.2, training=self.training) out = function.leaky_relu(self.fc_block2(out), negative_slope=0.1) out = function.dropout(out, p=0.2, training=self.training) out = self.fc_block3(out) return out