""" This code was modified from the GCN implementation in DGL examples. Simplifying Graph Convolutional Networks Paper: https://arxiv.org/abs/1902.07153 Code: https://github.com/Tiiiger/SGC SGC implementation in DGL. """ import argparse import math import time import dgl import mxnet as mx import numpy as np from dgl.data import ( CiteseerGraphDataset, CoraGraphDataset, PubmedGraphDataset, register_data_args, ) from dgl.nn.mxnet.conv import SGConv from mxnet import gluon, nd from mxnet.gluon import nn def evaluate(model, g, features, labels, mask): pred = model(g, features).argmax(axis=1) accuracy = ((pred == labels) * mask).sum() / mask.sum().asscalar() return accuracy.asscalar() def main(args): # load and preprocess dataset if args.dataset == "cora": data = CoraGraphDataset() elif args.dataset == "citeseer": data = CiteseerGraphDataset() elif args.dataset == "pubmed": data = PubmedGraphDataset() else: raise ValueError("Unknown dataset: {}".format(args.dataset)) g = data[0] if args.gpu < 0: cuda = False ctx = mx.cpu(0) else: cuda = True ctx = mx.gpu(args.gpu) g = g.int().to(ctx) features = g.ndata["feat"] labels = mx.nd.array(g.ndata["label"], dtype="float32", ctx=ctx) train_mask = g.ndata["train_mask"] val_mask = g.ndata["val_mask"] test_mask = g.ndata["test_mask"] in_feats = features.shape[1] n_classes = data.num_labels n_edges = data.graph.number_of_edges() print( """----Data statistics------' #Edges %d #Classes %d #Train samples %d #Val samples %d #Test samples %d""" % ( n_edges, n_classes, train_mask.sum().asscalar(), val_mask.sum().asscalar(), test_mask.sum().asscalar(), ) ) # add self loop g = dgl.remove_self_loop(g) g = dgl.add_self_loop(g) # create SGC model model = SGConv(in_feats, n_classes, k=2, cached=True, bias=args.bias) model.initialize(ctx=ctx) n_train_samples = train_mask.sum().asscalar() loss_fcn = gluon.loss.SoftmaxCELoss() # use optimizer print(model.collect_params()) trainer = gluon.Trainer( model.collect_params(), "adam", {"learning_rate": args.lr, "wd": args.weight_decay}, ) # initialize graph dur = [] for epoch in range(args.n_epochs): if epoch >= 3: t0 = time.time() # forward with mx.autograd.record(): pred = model(g, features) loss = loss_fcn(pred, labels, mx.nd.expand_dims(train_mask, 1)) loss = loss.sum() / n_train_samples loss.backward() trainer.step(batch_size=1) if epoch >= 3: loss.asscalar() dur.append(time.time() - t0) acc = evaluate(model, g, features, labels, val_mask) print( "Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | " "ETputs(KTEPS) {:.2f}".format( epoch, np.mean(dur), loss.asscalar(), acc, n_edges / np.mean(dur) / 1000, ) ) # test set accuracy acc = evaluate(model, g, features, labels, test_mask) print("Test accuracy {:.2%}".format(acc)) if __name__ == "__main__": parser = argparse.ArgumentParser(description="SGC") register_data_args(parser) parser.add_argument("--gpu", type=int, default=-1, help="gpu") parser.add_argument("--lr", type=float, default=0.2, help="learning rate") parser.add_argument( "--bias", action="store_true", default=False, help="flag to use bias" ) parser.add_argument( "--n-epochs", type=int, default=100, help="number of training epochs" ) parser.add_argument( "--weight-decay", type=float, default=5e-6, help="Weight for L2 loss" ) args = parser.parse_args() print(args) main(args)