import argparse import os import torch as th from gnnlens import Writer from models import Model import dgl from dgl import load_graphs from dgl.data import (BACommunityDataset, BAShapeDataset, TreeCycleDataset, TreeGridDataset) from dgl.nn import GNNExplainer def main(args): if args.dataset == "BAShape": dataset = BAShapeDataset(seed=0) elif args.dataset == "BACommunity": dataset = BACommunityDataset(seed=0) elif args.dataset == "TreeCycle": dataset = TreeCycleDataset(seed=0) elif args.dataset == "TreeGrid": dataset = TreeGridDataset(seed=0) graph = dataset[0] labels = graph.ndata["label"] feats = graph.ndata["feat"] num_classes = dataset.num_classes # load an existing model model_path = os.path.join("./", f"model_{args.dataset}.pth") model_stat_dict = th.load(model_path) model = Model(feats.shape[-1], num_classes) model.load_state_dict(model_stat_dict) # Choose the first node of the class 1 for explaining prediction target_class = 1 for n_idx, n_label in enumerate(labels): if n_label == target_class: break explainer = GNNExplainer(model, num_hops=3) new_center, sub_graph, feat_mask, edge_mask = explainer.explain_node( n_idx, graph, feats ) # gnnlens2 # Specify the path to create a new directory for dumping data files. writer = Writer("gnn_subgraph") writer.add_graph( name=args.dataset, graph=graph, nlabels=labels, num_nlabel_types=num_classes, ) writer.add_subgraph( graph_name=args.dataset, subgraph_name="GNNExplainer", node_id=n_idx, subgraph_nids=sub_graph.ndata[dgl.NID], subgraph_eids=sub_graph.edata[dgl.EID], subgraph_eweights=edge_mask, ) # Finish dumping. writer.close() if __name__ == "__main__": parser = argparse.ArgumentParser(description="Demo of GNN explainer in DGL") parser.add_argument( "--dataset", type=str, default="BAShape", choices=["BAShape", "BACommunity", "TreeCycle", "TreeGrid"], ) args = parser.parse_args() print(args) main(args)