""" [Simplifying Graph Convolutional Networks] (https://arxiv.org/abs/1902.07153) """ import torch import torch.nn as nn import torch.nn.functional as F from dgl.data import CoraGraphDataset from dgl.mock_sparse import create_from_coo, diag, identity from torch.optim import Adam ################################################################################ # (HIGHLIGHT) Take the advantage of DGL sparse APIs to implement the feature # pre-computation. ################################################################################ def pre_compute(A, X, k): for _ in range(k): X = A @ X return X def evaluate(g, pred): label = g.ndata["label"] val_mask = g.ndata["val_mask"] test_mask = g.ndata["test_mask"] # Compute accuracy on validation/test set. val_acc = (pred[val_mask] == label[val_mask]).float().mean() test_acc = (pred[test_mask] == label[test_mask]).float().mean() return val_acc, test_acc def train(g, X_sgc, model): label = g.ndata["label"] train_mask = g.ndata["train_mask"] optimizer = Adam(model.parameters(), lr=2e-1, weight_decay=5e-6) for epoch in range(20): # Forward. logits = model(X_sgc) # Compute loss with nodes in the training set. loss = F.cross_entropy(logits[train_mask], label[train_mask]) # Backward. optimizer.zero_grad() loss.backward() optimizer.step() # Compute prediction. pred = logits.argmax(dim=1) # Evaluate the prediction. val_acc, test_acc = evaluate(g, pred) print( f"In epoch {epoch}, loss: {loss:.3f}, val acc: {val_acc:.3f}, test" f" acc: {test_acc:.3f}" ) if __name__ == "__main__": # If CUDA is available, use GPU to accelerate the training, use CPU # otherwise. dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Load graph from the existing dataset. dataset = CoraGraphDataset() g = dataset[0].to(dev) # Create the sparse adjacency matrix A src, dst = g.edges() N = g.num_nodes() A = create_from_coo(dst, src, shape=(N, N)) # Calculate the symmetrically normalized adjacency matrix. I = identity(A.shape, device=dev) A_hat = A + I D_hat = diag(A_hat.sum(dim=1)) ** -0.5 A_hat = D_hat @ A_hat @ D_hat # 2-hop diffusion. k = 2 X = g.ndata["feat"] X_sgc = pre_compute(A_hat, X, k) # Create model. in_size = X.shape[1] out_size = dataset.num_classes model = nn.Linear(in_size, out_size).to(dev) # Kick off training. train(g, X_sgc, model)