""" Semi-Supervised Classification with Graph Convolutional Networks Paper: https://arxiv.org/abs/1609.02907 Code: https://github.com/tkipf/gcn GCN with batch processing """ import argparse import numpy as np import time import torch import torch.nn as nn import torch.nn.functional as F import dgl from dgl import DGLGraph from dgl.data import register_data_args, load_data def gcn_msg(src, edge): return src def gcn_reduce(node, msgs): return torch.sum(msgs, 1) class NodeApplyModule(nn.Module): def __init__(self, in_feats, out_feats, activation=None): super(NodeApplyModule, self).__init__() self.linear = nn.Linear(in_feats, out_feats) self.activation = activation def forward(self, node): h = self.linear(node) if self.activation: h = self.activation(h) return h class GCN(nn.Module): def __init__(self, g, in_feats, n_hidden, n_classes, n_layers, activation, dropout): super(GCN, self).__init__() self.g = g self.dropout = dropout # input layer self.layers = nn.ModuleList([NodeApplyModule(in_feats, n_hidden, activation)]) # hidden layers for i in range(n_layers - 1): self.layers.append(NodeApplyModule(n_hidden, n_hidden, activation)) # output layer self.layers.append(NodeApplyModule(n_hidden, n_classes)) def forward(self, features): self.g.set_n_repr(features) for layer in self.layers: # apply dropout if self.dropout: val = F.dropout(self.g.get_n_repr(), p=self.dropout) self.g.set_n_repr(val) self.g.update_all(gcn_msg, gcn_reduce, layer, batchable=True) return self.g.pop_n_repr() def main(args): # load and preprocess dataset data = load_data(args) features = torch.FloatTensor(data.features) labels = torch.LongTensor(data.labels) mask = torch.ByteTensor(data.train_mask) in_feats = features.shape[1] n_classes = data.num_labels n_edges = data.graph.number_of_edges() if args.gpu < 0: cuda = False else: cuda = True torch.cuda.set_device(args.gpu) features = features.cuda() labels = labels.cuda() mask = mask.cuda() # create GCN model g = DGLGraph(data.graph) model = GCN(g, in_feats, args.n_hidden, n_classes, args.n_layers, F.relu, args.dropout) if cuda: model.cuda() # use optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) # initialize graph dur = [] for epoch in range(args.n_epochs): if epoch >= 3: t0 = time.time() # forward logits = model(features) logp = F.log_softmax(logits, 1) loss = F.nll_loss(logp[mask], labels[mask]) optimizer.zero_grad() loss.backward() optimizer.step() if epoch >= 3: dur.append(time.time() - t0) print("Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f} | ETputs(KTEPS) {:.2f}".format( epoch, loss.item(), np.mean(dur), n_edges / np.mean(dur) / 1000)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='GCN') register_data_args(parser) parser.add_argument("--dropout", type=float, default=0, help="dropout probability") parser.add_argument("--gpu", type=int, default=-1, help="gpu") parser.add_argument("--lr", type=float, default=1e-3, help="learning rate") parser.add_argument("--n-epochs", type=int, default=20, help="number of training epochs") parser.add_argument("--n-hidden", type=int, default=16, help="number of hidden gcn units") parser.add_argument("--n-layers", type=int, default=1, help="number of hidden gcn layers") args = parser.parse_args() print(args) main(args)