# Relational-GCN * Paper: [https://arxiv.org/abs/1703.06103](https://arxiv.org/abs/1703.06103) * Author's code for entity classification: [https://github.com/tkipf/relational-gcn](https://github.com/tkipf/relational-gcn) * Author's code for link prediction: [https://github.com/MichSchli/RelationPrediction](https://github.com/MichSchli/RelationPrediction) ### Dependencies Two extra python packages are needed for this example: - MXNet nightly build - requests - rdflib - pandas ```bash pip install mxnet --pre pip install requests rdflib pandas ``` Example code was tested with rdflib 4.2.2 and pandas 0.23.4 ### Entity Classification AIFB: accuracy 97.22% (DGL), 95.83% (paper) ``` DGLBACKEND=mxnet python entity_classify.py -d aifb --testing --gpu 0 ``` MUTAG: accuracy 76.47% (DGL), 73.23% (paper) ``` DGLBACKEND=mxnet python entity_classify.py -d mutag --l2norm 5e-4 --n-bases 40 --testing --gpu 0 ``` BGS: accuracy 79.31% (DGL, n-basese=20, OOM when >20), 83.10% (paper) ``` DGLBACKEND=mxnet python entity_classify.py -d bgs --l2norm 5e-4 --n-bases 20 --testing --gpu 0 --relabel ```