# DGL Implementation of the SEAL Paper This DGL example implements the link prediction model proposed in the paper [Link Prediction Based on Graph Neural Networks](https://arxiv.org/pdf/1802.09691.pdf) and [REVISITING GRAPH NEURAL NETWORKS FOR LINK PREDICTION](https://arxiv.org/pdf/2010.16103.pdf) The author's codes of implementation is in [SEAL](https://github.com/muhanzhang/SEAL) (pytorch) and [SEAL_ogb](https://github.com/facebookresearch/SEAL_OGB) (torch_geometric) Example implementor ---------------------- This example was implemented by [Smile](https://github.com/Smilexuhc) during his intern work at the AWS Shanghai AI Lab. The graph dataset used in this example --------------------------------------- ogbl-collab - NumNodes: 235868 - NumEdges: 2358104 - NumNodeFeats: 128 - NumEdgeWeights: 1 - NumValidEdges: 160084 - NumTestEdges: 146329 Dependencies -------------------------------- - python 3.6+ - Pytorch 1.5.0+ - dgl 0.6.0 + - ogb - pandas - tqdm - scipy How to run example files -------------------------------- In the seal_dgl folder run on cpu: ```shell script python main.py --gpu_id=-1 --subsample_ratio=0.1 ``` run on gpu: ```shell script python main.py --gpu_id=0 --subsample_ratio=0.1 ``` Performance ------------------------- experiment on `ogbl-collab` | method | valid-hits@50 | test-hits@50 | | ------ | ------------- | ------------ | | paper | 63.89(0.49) | 53.71(0.47) | | ours | 63.56(0.71) | 53.61(0.78) | Note: We only perform 5 trails in the experiment.