import argparse import os import pickle import time import dgl import numpy as np import torch import torch.optim as optim from dataset import LanderDataset from models import LANDER ########### # ArgParser parser = argparse.ArgumentParser() # Dataset parser.add_argument("--data_path", type=str, required=True) parser.add_argument("--levels", type=str, default="1") parser.add_argument("--faiss_gpu", action="store_true") parser.add_argument("--model_filename", type=str, default="lander.pth") # KNN parser.add_argument("--knn_k", type=str, default="10") parser.add_argument("--num_workers", type=int, default=0) # Model parser.add_argument("--hidden", type=int, default=512) parser.add_argument("--num_conv", type=int, default=1) parser.add_argument("--dropout", type=float, default=0.0) parser.add_argument("--gat", action="store_true") parser.add_argument("--gat_k", type=int, default=1) parser.add_argument("--balance", action="store_true") parser.add_argument("--use_cluster_feat", action="store_true") parser.add_argument("--use_focal_loss", action="store_true") # Training parser.add_argument("--epochs", type=int, default=100) parser.add_argument("--batch_size", type=int, default=1024) parser.add_argument("--lr", type=float, default=0.1) parser.add_argument("--momentum", type=float, default=0.9) parser.add_argument("--weight_decay", type=float, default=1e-5) args = parser.parse_args() print(args) ########################### # Environment Configuration if torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") ################## # Data Preparation with open(args.data_path, "rb") as f: features, labels = pickle.load(f) k_list = [int(k) for k in args.knn_k.split(",")] lvl_list = [int(l) for l in args.levels.split(",")] gs = [] nbrs = [] ks = [] for k, l in zip(k_list, lvl_list): dataset = LanderDataset( features=features, labels=labels, k=k, levels=l, faiss_gpu=args.faiss_gpu, ) gs += [g for g in dataset.gs] ks += [k for g in dataset.gs] nbrs += [nbr for nbr in dataset.nbrs] print("Dataset Prepared.") def set_train_sampler_loader(g, k): fanouts = [k - 1 for i in range(args.num_conv + 1)] sampler = dgl.dataloading.MultiLayerNeighborSampler(fanouts) # fix the number of edges train_dataloader = dgl.dataloading.DataLoader( g, torch.arange(g.num_nodes()), sampler, batch_size=args.batch_size, shuffle=True, drop_last=False, num_workers=args.num_workers, ) return train_dataloader train_loaders = [] for gidx, g in enumerate(gs): train_dataloader = set_train_sampler_loader(gs[gidx], ks[gidx]) train_loaders.append(train_dataloader) ################## # Model Definition feature_dim = gs[0].ndata["features"].shape[1] model = LANDER( feature_dim=feature_dim, nhid=args.hidden, num_conv=args.num_conv, dropout=args.dropout, use_GAT=args.gat, K=args.gat_k, balance=args.balance, use_cluster_feat=args.use_cluster_feat, use_focal_loss=args.use_focal_loss, ) model = model.to(device) model.train() ################# # Hyperparameters opt = optim.SGD( model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay, ) # keep num_batch_per_loader the same for every sub_dataloader num_batch_per_loader = len(train_loaders[0]) train_loaders = [iter(train_loader) for train_loader in train_loaders] num_loaders = len(train_loaders) scheduler = optim.lr_scheduler.CosineAnnealingLR( opt, T_max=args.epochs * num_batch_per_loader * num_loaders, eta_min=1e-5 ) print("Start Training.") ############### # Training Loop for epoch in range(args.epochs): loss_den_val_total = [] loss_conn_val_total = [] loss_val_total = [] for batch in range(num_batch_per_loader): for loader_id in range(num_loaders): try: minibatch = next(train_loaders[loader_id]) except: train_loaders[loader_id] = iter( set_train_sampler_loader(gs[loader_id], ks[loader_id]) ) minibatch = next(train_loaders[loader_id]) input_nodes, sub_g, bipartites = minibatch sub_g = sub_g.to(device) bipartites = [b.to(device) for b in bipartites] # get the feature for the input_nodes opt.zero_grad() output_bipartite = model(bipartites) loss, loss_den_val, loss_conn_val = model.compute_loss( output_bipartite ) loss_den_val_total.append(loss_den_val) loss_conn_val_total.append(loss_conn_val) loss_val_total.append(loss.item()) loss.backward() opt.step() if (batch + 1) % 10 == 0: print( "epoch: %d, batch: %d / %d, loader_id : %d / %d, loss: %.6f, loss_den: %.6f, loss_conn: %.6f" % ( epoch, batch, num_batch_per_loader, loader_id, num_loaders, loss.item(), loss_den_val, loss_conn_val, ) ) scheduler.step() print( "epoch: %d, loss: %.6f, loss_den: %.6f, loss_conn: %.6f" % ( epoch, np.array(loss_val_total).mean(), np.array(loss_den_val_total).mean(), np.array(loss_conn_val_total).mean(), ) ) torch.save(model.state_dict(), args.model_filename) torch.save(model.state_dict(), args.model_filename)