# This is a simple MXNet server demo shows how to use DGL distributed kvstore. import dgl import argparse import torch as th ndata_g2l = [] edata_g2l = [] ndata_g2l.append({'ndata':th.tensor([0,1,0,0,0,0,0,0])}) ndata_g2l.append({'ndata':th.tensor([0,0,0,1,0,0,0,0])}) ndata_g2l.append({'ndata':th.tensor([0,0,0,0,0,1,0,0])}) ndata_g2l.append({'ndata':th.tensor([0,0,0,0,0,0,0,1])}) edata_g2l.append({'edata':th.tensor([0,1,0,0,0,0,0,0])}) edata_g2l.append({'edata':th.tensor([0,0,0,1,0,0,0,0])}) edata_g2l.append({'edata':th.tensor([0,0,0,0,0,1,0,0])}) edata_g2l.append({'edata':th.tensor([0,0,0,0,0,0,0,1])}) DATA = [] DATA.append(th.tensor([[4.,4.,4.,],[4.,4.,4.,]])) DATA.append(th.tensor([[3.,3.,3.,],[3.,3.,3.,]])) DATA.append(th.tensor([[2.,2.,2.,],[2.,2.,2.,]])) DATA.append(th.tensor([[1.,1.,1.,],[1.,1.,1.,]])) def start_server(args): dgl.contrib.start_server( server_id=args.id, ip_config='ip_config.txt', num_client=4, ndata={'ndata':DATA[args.id]}, edata={'edata':DATA[args.id]}, ndata_g2l=ndata_g2l[args.id], edata_g2l=edata_g2l[args.id]) if __name__ == '__main__': parser = argparse.ArgumentParser(description='kvstore') parser.add_argument("--id", type=int, default=0, help="node ID") args = parser.parse_args() start_server(args)