Graph Isomorphism Network (GIN) ============ - Paper link: [arXiv](https://arxiv.org/abs/1810.00826) [OpenReview](https://openreview.net/forum?id=ryGs6iA5Km) - Author's code repo: [https://github.com/weihua916/powerful-gnns](https://github.com/weihua916/powerful-gnns). Dependencies ------------ - PyTorch 1.1.0+ - sklearn - tqdm ``bash pip install torch sklearn tqdm `` How to run ---------- An experiment on the GIN in default settings can be run with ```bash python main.py ``` An experiment on the GIN in customized settings can be run with ```bash python main.py [--device 0 | --disable-cuda] --dataset COLLAB \ --graph_pooling_type max --neighbor_pooling_type sum ``` Results ------- Run with following with the double SUM pooling way: (tested dataset: "MUTAG"(default), "COLLAB", "IMDBBINARY", "IMDBMULTI") ```bash python main.py --dataset MUTAG --device 0 \ --graph_pooling_type sum --neighbor_pooling_type sum ``` * MUTAG: 0.85 (paper: ~0.89) * COLLAB: 0.89 (paper: ~0.80) * IMDBBINARY: 0.76 (paper: ~0.75) * IMDBMULTI: 0.51 (paper: ~0.52)