""" This code was modified from the GCN implementation in DGL examples. Simplifying Graph Convolutional Networks Paper: https://arxiv.org/abs/1902.07153 Code: https://github.com/Tiiiger/SGC SGC implementation in DGL. """ import argparse, time, math import numpy as np import mxnet as mx from mxnet import nd, gluon from mxnet.gluon import nn from dgl import DGLGraph from dgl.data import register_data_args, load_data from dgl.nn.mxnet.conv import SGConv def evaluate(model, g, features, labels, mask): pred = model(g, features).argmax(axis=1) accuracy = ((pred == labels) * mask).sum() / mask.sum().asscalar() return accuracy.asscalar() def main(args): # load and preprocess dataset data = load_data(args) features = nd.array(data.features) labels = nd.array(data.labels) train_mask = nd.array(data.train_mask) val_mask = nd.array(data.val_mask) test_mask = nd.array(data.test_mask) in_feats = features.shape[1] n_classes = data.num_labels n_edges = data.graph.number_of_edges() print("""----Data statistics------' #Edges %d #Classes %d #Train samples %d #Val samples %d #Test samples %d""" % (n_edges, n_classes, train_mask.sum().asscalar(), val_mask.sum().asscalar(), test_mask.sum().asscalar())) if args.gpu < 0: ctx = mx.cpu(0) else: ctx = mx.gpu(args.gpu) features = features.as_in_context(ctx) labels = labels.as_in_context(ctx) train_mask = train_mask.as_in_context(ctx) val_mask = val_mask.as_in_context(ctx) test_mask = test_mask.as_in_context(ctx) # graph preprocess and calculate normalization factor g = DGLGraph(data.graph) n_edges = g.number_of_edges() # add self loop g.add_edges(g.nodes(), g.nodes()) # create SGC model model = SGConv(in_feats, n_classes, k=2, cached=True, bias=args.bias) model.initialize(ctx=ctx) n_train_samples = train_mask.sum().asscalar() loss_fcn = gluon.loss.SoftmaxCELoss() # use optimizer print(model.collect_params()) trainer = gluon.Trainer(model.collect_params(), 'adam', {'learning_rate': args.lr, 'wd': args.weight_decay}) # initialize graph dur = [] for epoch in range(args.n_epochs): if epoch >= 3: t0 = time.time() # forward with mx.autograd.record(): pred = model(g, features) loss = loss_fcn(pred, labels, mx.nd.expand_dims(train_mask, 1)) loss = loss.sum() / n_train_samples loss.backward() trainer.step(batch_size=1) if epoch >= 3: loss.asscalar() dur.append(time.time() - t0) acc = evaluate(model, g, features, labels, val_mask) print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | " "ETputs(KTEPS) {:.2f}". format( epoch, np.mean(dur), loss.asscalar(), acc, n_edges / np.mean(dur) / 1000)) # test set accuracy acc = evaluate(model, g, features, labels, test_mask) print("Test accuracy {:.2%}".format(acc)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='SGC') register_data_args(parser) parser.add_argument("--gpu", type=int, default=-1, help="gpu") parser.add_argument("--lr", type=float, default=0.2, help="learning rate") parser.add_argument("--bias", action='store_true', default=False, help="flag to use bias") parser.add_argument("--n-epochs", type=int, default=100, help="number of training epochs") parser.add_argument("--weight-decay", type=float, default=5e-6, help="Weight for L2 loss") args = parser.parse_args() print(args) main(args)