# DGL Implementation of ARMA This DGL example implements the GNN model proposed in the paper [Graph Neural Networks with convolutional ARMA filters](https://arxiv.org/abs/1901.01343). Contributor: [xnuohz](https://github.com/xnuohz) ### Requirements The codebase is implemented in Python 3.6. For version requirement of packages, see below. ``` dgl numpy 1.19.5 networkx 2.5 scikit-learn 0.24.1 tqdm 4.56.0 torch 1.7.0 ``` ### The graph datasets used in this example ###### Node Classification The DGL's built-in Cora, Pubmed, Citeseer datasets. Dataset summary: | Dataset | #Nodes | #Edges | #Feats | #Classes | #Train Nodes | #Val Nodes | #Test Nodes | | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | | Cora | 2,708 | 10,556 | 1,433 | 7(single label) | 140 | 500 | 1000 | | Citeseer | 3,327 | 9,228 | 3,703 | 6(single label) | 120 | 500 | 1000 | | Pubmed | 19,717 | 88,651 | 500 | 3(single label) | 60 | 500 | 1000 | ### Usage ###### Dataset options ``` --dataset str The graph dataset name. Default is 'Cora'. ``` ###### GPU options ``` --gpu int GPU index. Default is -1, using CPU. ``` ###### Model options ``` --epochs int Number of training epochs. Default is 2000. --early-stopping int Early stopping rounds. Default is 100. --lr float Adam optimizer learning rate. Default is 0.01. --lamb float L2 regularization coefficient. Default is 0.0005. --hid-dim int Hidden layer dimensionalities. Default is 16. --num-stacks int Number of K. Default is 2. --num-layers int Number of T. Default is 1. --dropout float Dropout applied at all layers. Default is 0.75. ``` ###### Examples The following commands learn a neural network and predict on the test set. Train an ARMA model which follows the original hyperparameters on different datasets. ```bash # Cora: python citation.py --gpu 0 # Citeseer: python citation.py --gpu 0 --dataset Citeseer --num-stacks 3 # Pubmed: python citation.py --gpu 0 --dataset Pubmed --dropout 0.25 --num-stacks 1 ``` ### Performance ###### Node Classification | Dataset | Cora | Citeseer | Pubmed | | :-: | :-: | :-: | :-: | | Metrics(Table 1.Node classification accuracy) | 83.4±0.6 | 72.5±0.4 | 78.9±0.3 | | Metrics(PyG) | 82.3±0.5 | 70.9±1.1 | 78.3±0.8 | | Metrics(DGL) | 80.9±0.6 | 71.6±0.8 | 75.0±4.2 |