import torch import dgl import numpy as np import scipy.sparse as ssp # This is the train-test split method most of the recommender system papers running on MovieLens # takes. It essentially follows the intuition of "training on the past and predict the future". # One can also change the threshold to make validation and test set take larger proportions. def train_test_split_by_time(df, timestamp, item): df = df.copy() df['train_mask'] = np.ones((len(df),), dtype=np.bool) df['val_mask'] = np.zeros((len(df),), dtype=np.bool) df['test_mask'] = np.zeros((len(df),), dtype=np.bool) df = df.sort_values([item, timestamp]) for track_id in df[item].unique(): idx = (df[item] == track_id).to_numpy().nonzero()[0] idx = df.index[idx] if len(idx) > 1: df.loc[idx[-1], 'train_mask'] = False df.loc[idx[-1], 'test_mask'] = True if len(idx) > 2: df.loc[idx[-2], 'train_mask'] = False df.loc[idx[-2], 'val_mask'] = True df = df.sort_index() return df['train_mask'].to_numpy().nonzero()[0], \ df['val_mask'].to_numpy().nonzero()[0], \ df['test_mask'].to_numpy().nonzero()[0] def build_train_graph(g, train_indices, utype, itype, etype, etype_rev): train_g = g.edge_subgraph( {etype: train_indices, etype_rev: train_indices}, preserve_nodes=True) # remove the induced node IDs - should be assigned by model instead del train_g.nodes[utype].data[dgl.NID] del train_g.nodes[itype].data[dgl.NID] # copy features for ntype in g.ntypes: for col, data in g.nodes[ntype].data.items(): train_g.nodes[ntype].data[col] = data for etype in g.etypes: for col, data in g.edges[etype].data.items(): train_g.edges[etype].data[col] = data[train_g.edges[etype].data[dgl.EID]] return train_g def build_val_test_matrix(g, val_indices, test_indices, utype, itype, etype): n_users = g.number_of_nodes(utype) n_items = g.number_of_nodes(itype) val_src, val_dst = g.find_edges(val_indices, etype=etype) test_src, test_dst = g.find_edges(test_indices, etype=etype) val_src = val_src.numpy() val_dst = val_dst.numpy() test_src = test_src.numpy() test_dst = test_dst.numpy() val_matrix = ssp.coo_matrix((np.ones_like(val_src), (val_src, val_dst)), (n_users, n_items)) test_matrix = ssp.coo_matrix((np.ones_like(test_src), (test_src, test_dst)), (n_users, n_items)) return val_matrix, test_matrix def linear_normalize(values): return (values - values.min(0, keepdims=True)) / \ (values.max(0, keepdims=True) - values.min(0, keepdims=True))