""" .. currentmodule:: dgl Message Passing Tutorial ======================== **Author**: `Minjie Wang `_, Quan Gan, Yu Gai, Zheng Zhang In this tutorial, you learn how to use different levels of the message passing API with PageRank on a small graph. In DGL, the message passing and feature transformations are **user-defined functions** (UDFs). """ ############################################################################### # The PageRank algorithm # ---------------------- # In each iteration of PageRank, every node (web page) first scatters its # PageRank value uniformly to its downstream nodes. The new PageRank value of # each node is computed by aggregating the received PageRank values from its # neighbors, which is then adjusted by the damping factor: # # .. math:: # # PV(u) = \frac{1-d}{N} + d \times \sum_{v \in \mathcal{N}(u)} # \frac{PV(v)}{D(v)} # # where :math:`N` is the number of nodes in the graph; :math:`D(v)` is the # out-degree of a node :math:`v`; and :math:`\mathcal{N}(u)` is the neighbor # nodes. ############################################################################### # A naive implementation # ---------------------- # Create a graph with 100 nodes by using ``networkx`` and then convert it to a # :class:`DGLGraph`. import networkx as nx import matplotlib.pyplot as plt import torch import dgl N = 100 # number of nodes DAMP = 0.85 # damping factor K = 10 # number of iterations g = nx.nx.erdos_renyi_graph(N, 0.1) g = dgl.DGLGraph(g) nx.draw(g.to_networkx(), node_size=50, node_color=[[.5, .5, .5,]]) plt.show() ############################################################################### # According to the algorithm, PageRank consists of two phases in a typical # scatter-gather pattern. Initialize the PageRank value of each node # to :math:`\frac{1}{N}` and then store each node's out-degree as a node feature. g.ndata['pv'] = torch.ones(N) / N g.ndata['deg'] = g.out_degrees(g.nodes()).float() ############################################################################### # Define the message function, which divides every node's PageRank # value by its out-degree and passes the result as message to its neighbors. def pagerank_message_func(edges): return {'pv' : edges.src['pv'] / edges.src['deg']} ############################################################################### # In DGL, the message functions are expressed as **Edge UDFs**. Edge UDFs # take in a single argument ``edges``. It has three members ``src``, ``dst``, # and ``data`` for accessing source node features, destination node features, # and edge features. Here, the function computes messages only # from source node features. # # Define the reduce function, which removes and aggregates the # messages from its ``mailbox``, and computes its new PageRank value. def pagerank_reduce_func(nodes): msgs = torch.sum(nodes.mailbox['pv'], dim=1) pv = (1 - DAMP) / N + DAMP * msgs return {'pv' : pv} ############################################################################### # The reduce functions are **Node UDFs**. Node UDFs have a single argument # ``nodes``, which has two members ``data`` and ``mailbox``. ``data`` # contains the node features and ``mailbox`` contains all incoming message # features, stacked along the second dimension (hence the ``dim=1`` argument). # # The message UDF works on a batch of edges, whereas the reduce UDF works on # a batch of edges but outputs a batch of nodes. Their relationships are as # follows: # # .. image:: https://i.imgur.com/kIMiuFb.png # # Register the message function and reduce function, which will be called # later by DGL. g.register_message_func(pagerank_message_func) g.register_reduce_func(pagerank_reduce_func) ############################################################################### # The algorithm is straightforward. Here is the code for one # PageRank iteration. def pagerank_naive(g): # Phase #1: send out messages along all edges. for u, v in zip(*g.edges()): g.send((u, v)) # Phase #2: receive messages to compute new PageRank values. for v in g.nodes(): g.recv(v) ############################################################################### # Batching semantics for a large graph # ------------------------------------ # The above code does not scale to a large graph because it iterates over all # the nodes. DGL solves this by allowing you to compute on a *batch* of nodes or # edges. For example, the following codes trigger message and reduce functions # on multiple nodes and edges at one time. def pagerank_batch(g): g.send(g.edges()) g.recv(g.nodes()) ############################################################################### # You are still using the same reduce function ``pagerank_reduce_func``, # where ``nodes.mailbox['pv']`` is a *single* tensor, stacking the incoming # messages along the second dimension. # # You might wonder if this is even possible to perform reduce on all # nodes in parallel, since each node may have different number of incoming # messages and you cannot really "stack" tensors of different lengths together. # In general, DGL solves the problem by grouping the nodes by the number of # incoming messages, and calling the reduce function for each group. ############################################################################### # Use higher-level APIs for efficiency # --------------------------------------- # DGL provides many routines that combine basic ``send`` and ``recv`` in # various ways. These routines are called **level-2 APIs**. For example, the next code example # shows how to further simplify the PageRank example with such an API. def pagerank_level2(g): g.update_all() ############################################################################### # In addition to ``update_all``, you can use ``pull``, ``push``, and ``send_and_recv`` # in this level-2 category. For more information, see :doc:`API reference <../../api/python/graph>`. ############################################################################### # Use DGL ``builtin`` functions for efficiency # ------------------------------------------------ # Some of the message and reduce functions are used frequently. For this reason, DGL also # provides ``builtin`` functions. For example, two ``builtin`` functions can be # used in the PageRank example. # # * :func:`dgl.function.copy_src(src, out) ` - This # code example is an edge UDF that computes the # output using the source node feature data. To use this, specify the name of # the source feature data (``src``) and the output name (``out``). # # * :func:`dgl.function.sum(msg, out) ` - This code example is a node UDF # that sums the messages in # the node's mailbox. To use this, specify the message name (``msg``) and the # output name (``out``). # # The following PageRank example shows such functions. import dgl.function as fn def pagerank_builtin(g): g.ndata['pv'] = g.ndata['pv'] / g.ndata['deg'] g.update_all(message_func=fn.copy_src(src='pv', out='m'), reduce_func=fn.sum(msg='m',out='m_sum')) g.ndata['pv'] = (1 - DAMP) / N + DAMP * g.ndata['m_sum'] ############################################################################### # In the previous example code, you directly provide the UDFs to the :func:`update_all ` # as its arguments. # This will override the previously registered UDFs. # # In addition to cleaner code, using ``builtin`` functions also gives DGL the # opportunity to fuse operations together. This results in faster execution. For # example, DGL will fuse the ``copy_src`` message function and ``sum`` reduce # function into one sparse matrix-vector (spMV) multiplication. # # `The following section `_ describes why spMV can speed up the scatter-gather # phase in PageRank. For more details about the ``builtin`` functions in DGL, # see :doc:`API reference <../../api/python/function>`. # # You can also download and run the different code examples to see the differences. for k in range(K): # Uncomment the corresponding line to select different version. # pagerank_naive(g) # pagerank_batch(g) # pagerank_level2(g) pagerank_builtin(g) print(g.ndata['pv']) ############################################################################### # .. _spmv: # # Using spMV for PageRank # ----------------------- # Using ``builtin`` functions allows DGL to understand the semantics of UDFs. # This allows you to create an efficient implementation. For example, in the case # of PageRank, one common method to accelerate it is by using its linear algebra # form. # # .. math:: # # \mathbf{R}^{k} = \frac{1-d}{N} \mathbf{1} + d \mathbf{A}*\mathbf{R}^{k-1} # # Here, :math:`\mathbf{R}^k` is the vector of the PageRank values of all nodes # at iteration :math:`k`; :math:`\mathbf{A}` is the sparse adjacency matrix # of the graph. # Computing this equation is quite efficient because there is an efficient # GPU kernel for the sparse matrix-vector multiplication (spMV). DGL # detects whether such optimization is available through the ``builtin`` # functions. If a certain combination of ``builtin`` can be mapped to an spMV # kernel (e.g., the PageRank example), DGL uses it automatically. We recommend # using ``builtin`` functions whenever possible. ############################################################################### # Next steps # ---------- # # * Learn how to use DGL (:doc:`builtin functions<../../features/builtin>`) to write # more efficient message passing. # * To see model tutorials, see the :doc:`overview page<../models/index>`. # * To learn about Graph Neural Networks, see :doc:`GCN tutorial<../models/1_gnn/1_gcn>`. # * To see how DGL batches multiple graphs, see :doc:`TreeLSTM tutorial<../models/2_small_graph/3_tree-lstm>`. # * Play with some graph generative models by following tutorial for :doc:`Deep Generative Model of Graphs<../models/3_generative_model/5_dgmg>`. # * To learn how traditional models are interpreted in a view of graph, see # the tutorials on :doc:`CapsuleNet<../models/4_old_wines/2_capsule>` and # :doc:`Transformer<../models/4_old_wines/7_transformer>`.