import torch import torch.nn as nn import torch.nn.functional as F from dgl.nn.pytorch import KNNGraph, EdgeConv class Model(nn.Module): def __init__(self, k, feature_dims, emb_dims, output_classes, input_dims=3, dropout_prob=0.5): super(Model, self).__init__() self.nng = KNNGraph(k) self.conv = nn.ModuleList() self.num_layers = len(feature_dims) for i in range(self.num_layers): self.conv.append(EdgeConv( feature_dims[i - 1] if i > 0 else input_dims, feature_dims[i], batch_norm=True)) self.proj = nn.Linear(sum(feature_dims), emb_dims[0]) self.embs = nn.ModuleList() self.bn_embs = nn.ModuleList() self.dropouts = nn.ModuleList() self.num_embs = len(emb_dims) - 1 for i in range(1, self.num_embs + 1): self.embs.append(nn.Linear( # * 2 because of concatenation of max- and mean-pooling emb_dims[i - 1] if i > 1 else (emb_dims[i - 1] * 2), emb_dims[i])) self.bn_embs.append(nn.BatchNorm1d(emb_dims[i])) self.dropouts.append(nn.Dropout(dropout_prob)) self.proj_output = nn.Linear(emb_dims[-1], output_classes) def forward(self, x): hs = [] batch_size, n_points, x_dims = x.shape h = x for i in range(self.num_layers): g = self.nng(h).to(h.device) h = h.view(batch_size * n_points, -1) h = self.conv[i](g, h) h = F.leaky_relu(h, 0.2) h = h.view(batch_size, n_points, -1) hs.append(h) h = torch.cat(hs, 2) h = self.proj(h) h_max, _ = torch.max(h, 1) h_avg = torch.mean(h, 1) h = torch.cat([h_max, h_avg], 1) for i in range(self.num_embs): h = self.embs[i](h) h = self.bn_embs[i](h) h = F.leaky_relu(h, 0.2) h = self.dropouts[i](h) h = self.proj_output(h) return h def compute_loss(logits, y, eps=0.2): num_classes = logits.shape[1] one_hot = torch.zeros_like(logits).scatter_(1, y.view(-1, 1), 1) one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (num_classes - 1) log_prob = F.log_softmax(logits, 1) loss = -(one_hot * log_prob).sum(1).mean() return loss