import numpy as np import dgl import torch from torch.utils.data import IterableDataset, DataLoader def compact_and_copy(frontier, seeds): block = dgl.to_block(frontier, seeds) for col, data in frontier.edata.items(): if col == dgl.EID: continue block.edata[col] = data[block.edata[dgl.EID]] return block class ItemToItemBatchSampler(IterableDataset): def __init__(self, g, user_type, item_type, batch_size): self.g = g self.user_type = user_type self.item_type = item_type self.user_to_item_etype = list(g.metagraph[user_type][item_type])[0] self.item_to_user_etype = list(g.metagraph[item_type][user_type])[0] self.batch_size = batch_size def __iter__(self): while True: heads = torch.randint(0, self.g.number_of_nodes(self.item_type), (self.batch_size,)) tails = dgl.sampling.random_walk( self.g, heads, metapath=[self.item_to_user_etype, self.user_to_item_etype])[0][:, 2] neg_tails = torch.randint(0, self.g.number_of_nodes(self.item_type), (self.batch_size,)) mask = (tails != -1) yield heads[mask], tails[mask], neg_tails[mask] class NeighborSampler(object): def __init__(self, g, user_type, item_type, random_walk_length, random_walk_restart_prob, num_random_walks, num_neighbors, num_layers): self.g = g self.user_type = user_type self.item_type = item_type self.user_to_item_etype = list(g.metagraph[user_type][item_type])[0] self.item_to_user_etype = list(g.metagraph[item_type][user_type])[0] self.samplers = [ dgl.sampling.PinSAGESampler(g, item_type, user_type, random_walk_length, random_walk_restart_prob, num_random_walks, num_neighbors) for _ in range(num_layers)] def sample_blocks(self, seeds, heads=None, tails=None, neg_tails=None): blocks = [] for sampler in self.samplers: frontier = sampler(seeds) if heads is not None: eids = frontier.edge_ids(torch.cat([heads, heads]), torch.cat([tails, neg_tails]), return_uv=True)[2] if len(eids) > 0: old_frontier = frontier frontier = dgl.remove_edges(old_frontier, eids) #print(old_frontier) #print(frontier) #print(frontier.edata['weights']) #frontier.edata['weights'] = old_frontier.edata['weights'][frontier.edata[dgl.EID]] block = compact_and_copy(frontier, seeds) seeds = block.srcdata[dgl.NID] blocks.insert(0, block) return blocks def sample_from_item_pairs(self, heads, tails, neg_tails): # Create a graph with positive connections only and another graph with negative # connections only. pos_graph = dgl.graph( (heads, tails), num_nodes=self.g.number_of_nodes(self.item_type), ntype=self.item_type) neg_graph = dgl.graph( (heads, neg_tails), num_nodes=self.g.number_of_nodes(self.item_type), ntype=self.item_type) pos_graph, neg_graph = dgl.compact_graphs([pos_graph, neg_graph]) seeds = pos_graph.ndata[dgl.NID] blocks = self.sample_blocks(seeds, heads, tails, neg_tails) return pos_graph, neg_graph, blocks def assign_simple_node_features(ndata, g, ntype, assign_id=False): """ Copies data to the given block from the corresponding nodes in the original graph. """ for col in g.nodes[ntype].data.keys(): if not assign_id and col == dgl.NID: continue induced_nodes = ndata[dgl.NID] ndata[col] = g.nodes[ntype].data[col][induced_nodes] def assign_textual_node_features(ndata, textset, ntype): """ Assigns numericalized tokens from a torchtext dataset to given block. The numericalized tokens would be stored in the block as node features with the same name as ``field_name``. The length would be stored as another node feature with name ``field_name + '__len'``. block : DGLHeteroGraph First element of the compacted blocks, with "dgl.NID" as the corresponding node ID in the original graph, hence the index to the text dataset. The numericalized tokens (and lengths if available) would be stored onto the blocks as new node features. textset : torchtext.data.Dataset A torchtext dataset whose number of examples is the same as that of nodes in the original graph. """ node_ids = ndata[dgl.NID].numpy() for field_name, field in textset.fields.items(): examples = [getattr(textset[i], field_name) for i in node_ids] tokens, lengths = field.process(examples) if not field.batch_first: tokens = tokens.t() ndata[field_name] = tokens ndata[field_name + '__len'] = lengths def assign_features_to_blocks(blocks, g, textset, ntype): # For the first block (which is closest to the input), copy the features from # the original graph as well as the texts. assign_simple_node_features(blocks[0].srcdata, g, ntype) assign_textual_node_features(blocks[0].srcdata, textset, ntype) assign_simple_node_features(blocks[-1].dstdata, g, ntype) assign_textual_node_features(blocks[-1].dstdata, textset, ntype) class PinSAGECollator(object): def __init__(self, sampler, g, ntype, textset): self.sampler = sampler self.ntype = ntype self.g = g self.textset = textset def collate_train(self, batches): heads, tails, neg_tails = batches[0] # Construct multilayer neighborhood via PinSAGE... pos_graph, neg_graph, blocks = self.sampler.sample_from_item_pairs(heads, tails, neg_tails) assign_features_to_blocks(blocks, self.g, self.textset, self.ntype) return pos_graph, neg_graph, blocks def collate_test(self, samples): batch = torch.LongTensor(samples) blocks = self.sampler.sample_blocks(batch) assign_features_to_blocks(blocks, self.g, self.textset, self.ntype) return blocks