"""Training GCN model on citation graphs.""" import argparse, time import numpy as np import networkx as nx import mxnet as mx from mxnet import gluon import dgl from dgl.data import register_data_args, load_data from gcn import GCN #from gcn_mp import GCN #from gcn_spmv import GCN def evaluate(model, features, labels, mask): pred = model(features).argmax(axis=1) accuracy = ((pred == labels) * mask).sum() / mask.sum().asscalar() return accuracy.asscalar() def main(args): # load and preprocess dataset data = load_data(args) features = mx.nd.array(data.features) labels = mx.nd.array(data.labels) train_mask = mx.nd.array(data.train_mask) val_mask = mx.nd.array(data.val_mask) test_mask = mx.nd.array(data.test_mask) in_feats = features.shape[1] n_classes = data.num_labels n_edges = data.graph.number_of_edges() print("""----Data statistics------' #Edges %d #Classes %d #Train samples %d #Val samples %d #Test samples %d""" % (n_edges, n_classes, train_mask.sum().asscalar(), val_mask.sum().asscalar(), test_mask.sum().asscalar())) if args.gpu < 0: cuda = False ctx = mx.cpu(0) else: cuda = True ctx = mx.gpu(args.gpu) features = features.as_in_context(ctx) labels = labels.as_in_context(ctx) train_mask = train_mask.as_in_context(ctx) val_mask = val_mask.as_in_context(ctx) test_mask = test_mask.as_in_context(ctx) # create GCN model g = data.graph if args.self_loop: g.remove_edges_from(nx.selfloop_edges(g)) g.add_edges_from(zip(g.nodes(), g.nodes())) g = dgl.graph(g).to(ctx) # normalization degs = g.in_degrees().astype('float32') norm = mx.nd.power(degs, -0.5) if cuda: norm = norm.as_in_context(ctx) g.ndata['norm'] = mx.nd.expand_dims(norm, 1) model = GCN(g, in_feats, args.n_hidden, n_classes, args.n_layers, mx.nd.relu, args.dropout) model.initialize(ctx=ctx) n_train_samples = train_mask.sum().asscalar() loss_fcn = gluon.loss.SoftmaxCELoss() # use optimizer print(model.collect_params()) trainer = gluon.Trainer(model.collect_params(), 'adam', {'learning_rate': args.lr, 'wd': args.weight_decay}) # initialize graph dur = [] for epoch in range(args.n_epochs): if epoch >= 3: t0 = time.time() # forward with mx.autograd.record(): pred = model(features) loss = loss_fcn(pred, labels, mx.nd.expand_dims(train_mask, 1)) loss = loss.sum() / n_train_samples loss.backward() trainer.step(batch_size=1) if epoch >= 3: loss.asscalar() dur.append(time.time() - t0) acc = evaluate(model, features, labels, val_mask) print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | " "ETputs(KTEPS) {:.2f}". format( epoch, np.mean(dur), loss.asscalar(), acc, n_edges / np.mean(dur) / 1000)) # test set accuracy acc = evaluate(model, features, labels, test_mask) print("Test accuracy {:.2%}".format(acc)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='GCN') register_data_args(parser) parser.add_argument("--dropout", type=float, default=0.5, help="dropout probability") parser.add_argument("--gpu", type=int, default=-1, help="gpu") parser.add_argument("--lr", type=float, default=3e-2, help="learning rate") parser.add_argument("--n-epochs", type=int, default=200, help="number of training epochs") parser.add_argument("--n-hidden", type=int, default=16, help="number of hidden gcn units") parser.add_argument("--n-layers", type=int, default=1, help="number of hidden gcn layers") parser.add_argument("--weight-decay", type=float, default=5e-4, help="Weight for L2 loss") parser.add_argument("--self-loop", action='store_true', help="graph self-loop (default=False)") parser.set_defaults(self_loop=False) args = parser.parse_args() print(args) main(args)