"""Modeling Relational Data with Graph Convolutional Networks Paper: https://arxiv.org/abs/1703.06103 Reference Code: https://github.com/tkipf/relational-gcn """ import argparse import numpy as np import time import torch as th import torch.nn as nn import torch.nn.functional as F from dgl.data.rdf import AIFB, MUTAG, BGS, AM from model import EntityClassify def main(args): # load graph data if args.dataset == 'aifb': dataset = AIFB() elif args.dataset == 'mutag': dataset = MUTAG() elif args.dataset == 'bgs': dataset = BGS() elif args.dataset == 'am': dataset = AM() else: raise ValueError() g = dataset.graph category = dataset.predict_category num_classes = dataset.num_classes train_idx = dataset.train_idx test_idx = dataset.test_idx labels = dataset.labels category_id = len(g.ntypes) for i, ntype in enumerate(g.ntypes): if ntype == category: category_id = i # split dataset into train, validate, test if args.validation: val_idx = train_idx[:len(train_idx) // 5] train_idx = train_idx[len(train_idx) // 5:] else: val_idx = train_idx # check cuda use_cuda = args.gpu >= 0 and th.cuda.is_available() if use_cuda: th.cuda.set_device(args.gpu) labels = labels.cuda() train_idx = train_idx.cuda() test_idx = test_idx.cuda() # create model model = EntityClassify(g, args.n_hidden, num_classes, num_bases=args.n_bases, num_hidden_layers=args.n_layers - 2, dropout=args.dropout, use_self_loop=args.use_self_loop) if use_cuda: model.cuda() # optimizer optimizer = th.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.l2norm) # training loop print("start training...") dur = [] model.train() for epoch in range(args.n_epochs): optimizer.zero_grad() if epoch > 5: t0 = time.time() logits = model()[category] loss = F.cross_entropy(logits[train_idx], labels[train_idx]) loss.backward() optimizer.step() t1 = time.time() if epoch > 5: dur.append(t1 - t0) train_acc = th.sum(logits[train_idx].argmax(dim=1) == labels[train_idx]).item() / len(train_idx) val_loss = F.cross_entropy(logits[val_idx], labels[val_idx]) val_acc = th.sum(logits[val_idx].argmax(dim=1) == labels[val_idx]).item() / len(val_idx) print("Epoch {:05d} | Train Acc: {:.4f} | Train Loss: {:.4f} | Valid Acc: {:.4f} | Valid loss: {:.4f} | Time: {:.4f}". format(epoch, train_acc, loss.item(), val_acc, val_loss.item(), np.average(dur))) print() if args.model_path is not None: th.save(model.state_dict(), args.model_path) model.eval() logits = model.forward()[category] test_loss = F.cross_entropy(logits[test_idx], labels[test_idx]) test_acc = th.sum(logits[test_idx].argmax(dim=1) == labels[test_idx]).item() / len(test_idx) print("Test Acc: {:.4f} | Test loss: {:.4f}".format(test_acc, test_loss.item())) print() if __name__ == '__main__': parser = argparse.ArgumentParser(description='RGCN') parser.add_argument("--dropout", type=float, default=0, help="dropout probability") parser.add_argument("--n-hidden", type=int, default=16, help="number of hidden units") parser.add_argument("--gpu", type=int, default=-1, help="gpu") parser.add_argument("--lr", type=float, default=1e-2, help="learning rate") parser.add_argument("--n-bases", type=int, default=-1, help="number of filter weight matrices, default: -1 [use all]") parser.add_argument("--n-layers", type=int, default=2, help="number of propagation rounds") parser.add_argument("-e", "--n-epochs", type=int, default=50, help="number of training epochs") parser.add_argument("-d", "--dataset", type=str, required=True, help="dataset to use") parser.add_argument("--model_path", type=str, default=None, help='path for save the model') parser.add_argument("--l2norm", type=float, default=0, help="l2 norm coef") parser.add_argument("--use-self-loop", default=False, action='store_true', help="include self feature as a special relation") fp = parser.add_mutually_exclusive_group(required=False) fp.add_argument('--validation', dest='validation', action='store_true') fp.add_argument('--testing', dest='validation', action='store_false') parser.set_defaults(validation=True) args = parser.parse_args() print(args) main(args)