# Stochastic Training for Graph Convolutional Networks * Paper: [Control Variate](https://arxiv.org/abs/1710.10568) * Paper: [Skip Connection](https://arxiv.org/abs/1809.05343) * Author's code: [https://github.com/thu-ml/stochastic_gcn](https://github.com/thu-ml/stochastic_gcn) ### Dependencies - MXNet nightly build ```bash pip install mxnet --pre ``` ### Neighbor Sampling & Skip Connection cora: test accuracy ~83% with `--num-neighbors 2`, ~84% by training on the full graph ``` DGLBACKEND=mxnet python examples/mxnet/sampling/train.py --model gcn_ns --dataset cora --self-loop --num-neighbors 2 --batch-size 1000 --test-batch-size 5000 ``` citeseer: test accuracy ~69% with `--num-neighbors 2`, ~70% by training on the full graph ``` DGLBACKEND=mxnet python examples/mxnet/sampling/train.py --model gcn_ns --dataset citeseer --self-loop --num-neighbors 2 --batch-size 1000 --test-batch-size 5000 ``` pubmed: test accuracy ~78% with `--num-neighbors 3`, ~77% by training on the full graph ``` DGLBACKEND=mxnet python examples/mxnet/sampling/train.py --model gcn_ns --dataset pubmed --self-loop --num-neighbors 3 --batch-size 1000 --test-batch-size 5000 ``` reddit: test accuracy ~91% with `--num-neighbors 3` and `--batch-size 1000`, ~93% by training on the full graph ``` DGLBACKEND=mxnet python examples/mxnet/sampling/train.py --model gcn_ns --dataset reddit-self-loop --num-neighbors 3 --batch-size 1000 --test-batch-size 5000 --n-hidden 64 ``` ### Control Variate & Skip Connection cora: test accuracy ~84% with `--num-neighbors 1`, ~84% by training on the full graph ``` DGLBACKEND=mxnet python examples/mxnet/sampling/train.py --model gcn_cv --dataset cora --self-loop --num-neighbors 1 --batch-size 1000000 --test-batch-size 1000000 ``` citeseer: test accuracy ~69% with `--num-neighbors 1`, ~70% by training on the full graph ``` DGLBACKEND=mxnet python examples/mxnet/sampling/train.py --model gcn_cv --dataset citeseer --self-loop --num-neighbors 1 --batch-size 1000000 --test-batch-size 1000000 ``` pubmed: test accuracy ~79% with `--num-neighbors 1`, ~77% by training on the full graph ``` DGLBACKEND=mxnet python examples/mxnet/sampling/train.py --model gcn_cv --dataset pubmed --self-loop --num-neighbors 1 --batch-size 1000000 --test-batch-size 1000000 ``` reddit: test accuracy ~93% with `--num-neighbors 1` and `--batch-size 1000`, ~93% by training on the full graph ``` DGLBACKEND=mxnet python examples/mxnet/sampling/train.py --model gcn_cv --dataset reddit-self-loop --num-neighbors 1 --batch-size 10000 --test-batch-size 5000 --n-hidden 64 ``` ### Control Variate & GraphSAGE-mean Following [Control Variate](https://arxiv.org/abs/1710.10568), we use the mean pooling architecture GraphSAGE-mean, two linear layers and layer normalization per graph convolution layer. reddit: test accuracy 96.1% with `--num-neighbors 1` and `--batch-size 1000`, ~96.2% in [Control Variate](https://arxiv.org/abs/1710.10568) with `--num-neighbors 2` and `--batch-size 1000` ``` DGLBACKEND=mxnet python examples/mxnet/sampling/train.py --model graphsage_cv --batch-size 1000 --test-batch-size 5000 --n-epochs 50 --dataset reddit --num-neighbors 1 --n-hidden 128 --dropout 0.2 --weight-decay 0 ``` ### Run multi-processing training Run the graph store server that loads the reddit dataset with four workers. ``` python3 examples/mxnet/sampling/run_store_server.py --dataset reddit --num-workers 4 ``` Run four workers to train GraphSage on the reddit dataset. ``` python3 ../incubator-mxnet/tools/launch.py -n 4 -s 1 --launcher local python3 examples/mxnet/sampling/multi_process_train.py --model graphsage_cv --batch-size 1000 --test-batch-size 5000 --n-epochs 1 --graph-name reddit --num-neighbors 1 --n-hidden 128 --dropout 0.2 --weight-decay 0 ```