""" This script trains and tests a GraphSAGE model for link prediction on large graphs using graphbolt dataloader. Paper: [Inductive Representation Learning on Large Graphs] (https://arxiv.org/abs/1706.02216) Unlike previous dgl examples, we've utilized the newly defined dataloader from GraphBolt. This example will help you grasp how to build an end-to-end training pipeline using GraphBolt. While node classification predicts labels for nodes based on their local neighborhoods, link prediction assesses the likelihood of an edge existing between two nodes, necessitating different sampling strategies that account for pairs of nodes and their joint neighborhoods. TODO: Add the link_prediction.py example to core/graphsage. Before reading this example, please familiar yourself with graphsage link prediction by reading the example in the `examples/core/graphsage/link_prediction.py` If you want to train graphsage on a large graph in a distributed fashion, read the example in the `examples/distributed/graphsage/`. This flowchart describes the main functional sequence of the provided example. main │ ├───> OnDiskDataset pre-processing │ ├───> Instantiate SAGE model │ ├───> train │ │ │ ├───> Get graphbolt dataloader (HIGHLIGHT) │ │ │ └───> Training loop │ │ │ ├───> SAGE.forward │ │ │ └───> Validation set evaluation │ └───> Test set evaluation """ import argparse import time from functools import partial import dgl.graphbolt as gb import dgl.nn as dglnn import torch import torch.nn as nn import torch.nn.functional as F import tqdm from ogb.linkproppred import Evaluator class SAGE(nn.Module): def __init__(self, in_size, hidden_size): super().__init__() self.layers = nn.ModuleList() self.layers.append(dglnn.SAGEConv(in_size, hidden_size, "mean")) self.layers.append(dglnn.SAGEConv(hidden_size, hidden_size, "mean")) self.layers.append(dglnn.SAGEConv(hidden_size, hidden_size, "mean")) self.hidden_size = hidden_size self.predictor = nn.Sequential( nn.Linear(hidden_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, 1), ) def forward(self, blocks, x): hidden_x = x for layer_idx, (layer, block) in enumerate(zip(self.layers, blocks)): hidden_x = layer(block, hidden_x) is_last_layer = layer_idx == len(self.layers) - 1 if not is_last_layer: hidden_x = F.relu(hidden_x) return hidden_x def inference(self, graph, features, dataloader, storage_device): """Conduct layer-wise inference to get all the node embeddings.""" pin_memory = storage_device == "pinned" buffer_device = torch.device("cpu" if pin_memory else storage_device) print("Start node embedding inference.") for layer_idx, layer in enumerate(self.layers): is_last_layer = layer_idx == len(self.layers) - 1 y = torch.empty( graph.total_num_nodes, self.hidden_size, dtype=torch.float32, device=buffer_device, pin_memory=pin_memory, ) for data in tqdm.tqdm(dataloader): # len(blocks) = 1 hidden_x = layer(data.blocks[0], data.node_features["feat"]) if not is_last_layer: hidden_x = F.relu(hidden_x) # By design, our seed nodes are contiguous. y[data.seed_nodes[0] : data.seed_nodes[-1] + 1] = hidden_x.to( buffer_device, non_blocking=True ) if not is_last_layer: features.update("node", None, "feat", y) return y def create_dataloader(args, graph, features, itemset, is_train=True): """Get a GraphBolt version of a dataloader for link prediction tasks. This function demonstrates how to utilize functional forms of datapipes in GraphBolt. Alternatively, you can create a datapipe using its class constructor. For a more detailed tutorial, please read the examples in `dgl/notebooks/graphbolt/walkthrough.ipynb`. """ ############################################################################ # [Input]: # 'itemset': The current dataset. # 'args.batch_size': Specify the number of samples to be processed together, # referred to as a 'mini-batch'. (The term 'mini-batch' is used here to # indicate a subset of the entire dataset that is processed together. This # is in contrast to processing the entire dataset, known as a 'full batch'.) # 'is_train': Determining if data should be shuffled. (Shuffling is # generally used only in training to improve model generalization. It's # not used in validation and testing as the focus there is to evaluate # performance rather than to learn from the data.) # [Output]: # An ItemSampler object for handling mini-batch sampling. # [Role]: # Initialize the ItemSampler to sample mini-batche from the dataset. ############################################################################ datapipe = gb.ItemSampler( itemset, batch_size=args.train_batch_size if is_train else args.eval_batch_size, shuffle=is_train, ) ############################################################################ # [Input]: # 'device': The device to copy the data to. # [Output]: # A CopyTo object to copy the data to the specified device. Copying here # ensures that the rest of the operations run on the GPU. ############################################################################ if args.storage_device != "cpu": datapipe = datapipe.copy_to(device=args.device) ############################################################################ # [Input]: # 'args.neg_ratio': Specify the ratio of negative to positive samples. # (E.g., if neg_ratio is 1, for each positive sample there will be 1 # negative sample.) # 'graph': The overall network topology for negative sampling. # [Output]: # A UniformNegativeSampler object that will handle the generation of # negative samples for link prediction tasks. # [Role]: # Initialize the UniformNegativeSampler for negative sampling in link # prediction. # [Note]: # If 'is_train' is False, the UniformNegativeSampler will not be used. # Since, in validation and testing, the itemset already contains the # negative edges information. ############################################################################ if is_train: datapipe = datapipe.sample_uniform_negative(graph, args.neg_ratio) ############################################################################ # [Input]: # 'datapipe' is either 'ItemSampler' or 'UniformNegativeSampler' depending # on whether training is needed ('is_train'), # 'graph': The network topology for sampling. # 'args.fanout': Number of neighbors to sample per node. # [Output]: # A NeighborSampler object to sample neighbors. # [Role]: # Initialize a neighbor sampler for sampling the neighborhoods of nodes. ############################################################################ datapipe = datapipe.sample_neighbor( graph, args.fanout if is_train else [-1] ) ############################################################################ # [Input]: # 'gb.exclude_seed_edges': Function to exclude seed edges, optionally # including their reverse edges, from the sampled subgraphs in the # minibatch. # [Output]: # A MiniBatchTransformer object with excluded seed edges. # [Role]: # During the training phase of link prediction, negative edges are # sampled. It's essential to exclude the seed edges from the process # to ensure that positive samples are not inadvertently included within # the negative samples. ############################################################################ if is_train and args.exclude_edges: datapipe = datapipe.transform( partial(gb.exclude_seed_edges, include_reverse_edges=True) ) ############################################################################ # [Input]: # 'features': The node features. # 'node_feature_keys': The node feature keys (list) to be fetched. # [Output]: # A FeatureFetcher object to fetch node features. # [Role]: # Initialize a feature fetcher for fetching features of the sampled # subgraphs. ############################################################################ datapipe = datapipe.fetch_feature(features, node_feature_keys=["feat"]) ############################################################################ # [Input]: # 'device': The device to copy the data to. # [Output]: # A CopyTo object to copy the data to the specified device. ############################################################################ if args.storage_device == "cpu": datapipe = datapipe.copy_to(device=args.device) ############################################################################ # [Input]: # 'datapipe': The datapipe object to be used for data loading. # 'args.num_workers': The number of processes to be used for data loading. # [Output]: # A DataLoader object to handle data loading. # [Role]: # Initialize a multi-process dataloader to load the data in parallel. ############################################################################ dataloader = gb.DataLoader( datapipe, num_workers=args.num_workers, ) # Return the fully-initialized DataLoader object. return dataloader @torch.no_grad() def compute_mrr(args, model, evaluator, node_emb, src, dst, neg_dst): """Compute the Mean Reciprocal Rank (MRR) for given source and destination nodes. This function computes the MRR for a set of node pairs, dividing the task into batches to handle potentially large graphs. """ rr = torch.zeros(src.shape[0]) # Loop over node pairs in batches. for start in tqdm.trange( 0, src.shape[0], args.eval_batch_size, desc="Evaluate" ): end = min(start + args.eval_batch_size, src.shape[0]) # Concatenate positive and negative destination nodes. all_dst = torch.cat([dst[start:end, None], neg_dst[start:end]], 1) # Fetch embeddings for current batch of source and destination nodes. h_src = node_emb[src[start:end]][:, None, :].to(args.device) h_dst = ( node_emb[all_dst.view(-1)].view(*all_dst.shape, -1).to(args.device) ) # Compute prediction scores using the model. pred = model.predictor(h_src * h_dst).squeeze(-1) # Evaluate the predictions to obtain MRR values. input_dict = {"y_pred_pos": pred[:, 0], "y_pred_neg": pred[:, 1:]} rr[start:end] = evaluator.eval(input_dict)["mrr_list"] return rr.mean() @torch.no_grad() def evaluate(args, model, graph, features, all_nodes_set, valid_set, test_set): """Evaluate the model on validation and test sets.""" model.eval() evaluator = Evaluator(name="ogbl-citation2") dataloader = create_dataloader( args, graph, features, all_nodes_set, is_train=False ) # Compute node embeddings for the entire graph. node_emb = model.inference(graph, features, dataloader, args.storage_device) results = [] # Loop over both validation and test sets. for split in [valid_set, test_set]: # Unpack the item set. src = split._items[0][:, 0].to(node_emb.device) dst = split._items[0][:, 1].to(node_emb.device) neg_dst = split._items[1].to(node_emb.device) # Compute MRR values for the current split. results.append( compute_mrr(args, model, evaluator, node_emb, src, dst, neg_dst) ) return results def train(args, model, graph, features, train_set): optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) dataloader = create_dataloader(args, graph, features, train_set) for epoch in range(args.epochs): model.train() total_loss = 0 start_epoch_time = time.time() for step, data in tqdm.tqdm(enumerate(dataloader)): # Get node pairs with labels for loss calculation. compacted_pairs, labels = data.node_pairs_with_labels node_feature = data.node_features["feat"] blocks = data.blocks # Get the embeddings of the input nodes. y = model(blocks, node_feature) logits = model.predictor( y[compacted_pairs[0]] * y[compacted_pairs[1]] ).squeeze() # Compute loss. loss = F.binary_cross_entropy_with_logits(logits, labels) optimizer.zero_grad() loss.backward() optimizer.step() total_loss += loss.item() if step + 1 == args.early_stop: # Early stopping requires a new dataloader to reset its state. dataloader = create_dataloader(args, graph, features, train_set) break end_epoch_time = time.time() print( f"Epoch {epoch:05d} | " f"Loss {(total_loss) / (step + 1):.4f} | " f"Time {(end_epoch_time - start_epoch_time):.4f} s" ) def parse_args(): parser = argparse.ArgumentParser(description="OGBL-Citation2 (GraphBolt)") parser.add_argument("--epochs", type=int, default=10) parser.add_argument("--lr", type=float, default=0.0005) parser.add_argument("--neg-ratio", type=int, default=1) parser.add_argument("--train-batch-size", type=int, default=512) parser.add_argument("--eval-batch-size", type=int, default=1024) parser.add_argument("--num-workers", type=int, default=0) parser.add_argument( "--early-stop", type=int, default=0, help="0 means no early stop, otherwise stop at the input-th step", ) parser.add_argument( "--fanout", type=str, default="15,10,5", help="Fan-out of neighbor sampling. Default: 15,10,5", ) parser.add_argument( "--exclude-edges", type=int, default=1, help="Whether to exclude reverse edges during sampling. Default: 1", ) parser.add_argument( "--mode", default="pinned-cuda", choices=["cpu-cpu", "cpu-cuda", "pinned-cuda", "cuda-cuda"], help="Dataset storage placement and Train device: 'cpu' for CPU and RAM," " 'pinned' for pinned memory in RAM, 'cuda' for GPU and GPU memory.", ) return parser.parse_args() def main(args): if not torch.cuda.is_available(): args.mode = "cpu-cpu" print(f"Training in {args.mode} mode.") args.storage_device, args.device = args.mode.split("-") args.device = torch.device(args.device) # Load and preprocess dataset. print("Loading data") dataset = gb.BuiltinDataset("ogbl-citation2").load() # Move the dataset to the selected storage. if args.storage_device == "pinned": graph = dataset.graph.pin_memory_() features = dataset.feature.pin_memory_() else: graph = dataset.graph.to(args.storage_device) features = dataset.feature.to(args.storage_device) train_set = dataset.tasks[0].train_set args.fanout = list(map(int, args.fanout.split(","))) in_size = features.size("node", None, "feat")[0] hidden_channels = 256 args.device = torch.device(args.device) model = SAGE(in_size, hidden_channels).to(args.device) # Model training. print("Training...") train(args, model, graph, features, train_set) # Test the model. print("Testing...") test_set = dataset.tasks[0].test_set valid_set = dataset.tasks[0].validation_set all_nodes_set = dataset.all_nodes_set valid_mrr, test_mrr = evaluate( args, model, graph, features, all_nodes_set, valid_set, test_set ) print( f"Validation MRR {valid_mrr.item():.4f}, " f"Test MRR {test_mrr.item():.4f}" ) if __name__ == "__main__": args = parse_args() main(args)