""" Semi-Supervised Classification with Graph Convolutional Networks Paper: https://arxiv.org/abs/1609.02907 Code: https://github.com/tkipf/gcn GCN with batch processing """ import argparse import numpy as np import time import torch import torch.nn as nn import torch.nn.functional as F from dgl import DGLGraph from dgl.data import register_data_args, load_data def gcn_msg(edges): return {'m' : edges.src['h']} def gcn_reduce(nodes): return {'h' : torch.sum(nodes.mailbox['m'], 1)} class NodeApplyModule(nn.Module): def __init__(self, in_feats, out_feats, activation=None): super(NodeApplyModule, self).__init__() self.linear = nn.Linear(in_feats, out_feats) self.activation = activation def forward(self, nodes): # normalization by square root of dst degree h = nodes.data['h'] * nodes.data['norm'] h = self.linear(h) if self.activation: h = self.activation(h) return {'h' : h} class GCN(nn.Module): def __init__(self, g, in_feats, n_hidden, n_classes, n_layers, activation, dropout): super(GCN, self).__init__() self.g = g if dropout: self.dropout = nn.Dropout(p=dropout) else: self.dropout = 0. self.layers = nn.ModuleList() # input layer self.layers.append(NodeApplyModule(in_feats, n_hidden, activation)) # hidden layers for i in range(n_layers - 1): self.layers.append(NodeApplyModule(n_hidden, n_hidden, activation)) # output layer self.layers.append(NodeApplyModule(n_hidden, n_classes)) def forward(self, features): self.g.ndata['h'] = features for idx, layer in enumerate(self.layers): # apply dropout if idx > 0 and self.dropout: self.g.ndata['h'] = self.dropout(self.g.ndata['h']) # normalization by square root of src degree self.g.ndata['h'] = self.g.ndata['h'] * self.g.ndata['norm'] self.g.update_all(gcn_msg, gcn_reduce, layer) return self.g.ndata.pop('h') def evaluate(model, features, labels, mask): model.eval() with torch.no_grad(): logits = model(features) logits = logits[mask] labels = labels[mask] _, indices = torch.max(logits, dim=1) correct = torch.sum(indices == labels) return correct.item() * 1.0 / len(labels) def main(args): # load and preprocess dataset data = load_data(args) features = torch.FloatTensor(data.features) labels = torch.LongTensor(data.labels) train_mask = torch.ByteTensor(data.train_mask) val_mask = torch.ByteTensor(data.val_mask) test_mask = torch.ByteTensor(data.test_mask) in_feats = features.shape[1] n_classes = data.num_labels n_edges = data.graph.number_of_edges() if args.gpu < 0: cuda = False else: cuda = True torch.cuda.set_device(args.gpu) features = features.cuda() labels = labels.cuda() train_mask = train_mask.cuda() val_mask = val_mask.cuda() test_mask = test_mask.cuda() # graph preprocess and calculate normalization factor g = DGLGraph(data.graph) n_edges = g.number_of_edges() # add self loop g.add_edges(g.nodes(), g.nodes()) # normalization degs = g.in_degrees().float() norm = torch.pow(degs, -0.5) norm[torch.isinf(norm)] = 0 if cuda: norm = norm.cuda() g.ndata['norm'] = norm.unsqueeze(1) # create GCN model model = GCN(g, in_feats, args.n_hidden, n_classes, args.n_layers, F.relu, args.dropout) if cuda: model.cuda() # use optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) # initialize graph dur = [] for epoch in range(args.n_epochs): model.train() if epoch >= 3: t0 = time.time() # forward logits = model(features) logp = F.log_softmax(logits, 1) loss = F.nll_loss(logp[train_mask], labels[train_mask]) optimizer.zero_grad() loss.backward() optimizer.step() if epoch >= 3: dur.append(time.time() - t0) acc = evaluate(model, features, labels, val_mask) print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | " "ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur), loss.item(), acc, n_edges / np.mean(dur) / 1000)) print() acc = evaluate(model, features, labels, test_mask) print("Test Accuracy {:.4f}".format(acc)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='GCN') register_data_args(parser) parser.add_argument("--dropout", type=float, default=0.5, help="dropout probability") parser.add_argument("--gpu", type=int, default=-1, help="gpu") parser.add_argument("--lr", type=float, default=1e-2, help="learning rate") parser.add_argument("--n-epochs", type=int, default=200, help="number of training epochs") parser.add_argument("--n-hidden", type=int, default=16, help="number of hidden gcn units") parser.add_argument("--n-layers", type=int, default=1, help="number of hidden gcn layers") parser.add_argument("--weight-decay", type=float, default=5e-4, help="Weight for L2 loss") args = parser.parse_args() print(args) main(args)