""" .. currentmodule:: dgl DGL at a Glance ========================= **Author**: `Minjie Wang `_, Quan Gan, `Jake Zhao `_, Zheng Zhang The goal of this tutorial: - Understand how DGL builds a graph and performs computation on graph from a high level. - Train a simple graph neural network in DGL to classify nodes in a graph. At the end of this tutorial, we hope you get a brief feeling of how DGL works. """ ############################################################################### # Why DGL? # ---------------- # DGL is designed to bring **machine learning** closer to **graph-structured # data**. Specifically DGL enables trouble-free implementation of graph neural # network (GNN) model family. Unlike PyTorch or Tensorflow, DGL provides # friendly APIs to perform the fundamental operations in GNNs such as message # passing and reduction. Through DGL, we hope to benefit both researchers # trying out new ideas and engineers in production. # # *This tutorial assumes basic familiarity with pytorch.* ############################################################################### # A toy graph: Zachary's Karate Club # ---------------------------------- # # We start by creating the well-knowned "Zachary's karate club" social network. # The network captures 34 members of a karate club, documenting pairwise links # between members who interacted outside the club. The club later splits into # two communities led by the instructor (node 0) and the club president (node # 33). A visualization of the network and the community is as follows: # # .. image:: http://historicaldataninjas.com/wp-content/uploads/2014/05/karate.jpg # :height: 400px # :width: 500px # :align: center # # Out task is to **build a graph neural network to predict which side each # member will join.** ############################################################################### # Build the graph # --------------- # A graph is built using :class:`~dgl.DGLGraph` class. Here is how we add the 34 members # and their interaction edges into the graph. import dgl def build_karate_club_graph(): g = dgl.DGLGraph() # add 34 nodes into the graph; nodes are labeled from 0~33 g.add_nodes(34) # all the 78 edges in a list of tuple edge_list = [(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (4, 0), (5, 0), (6, 0), (6, 4), (6, 5), (7, 0), (7, 1), (7, 2), (7, 3), (8, 0), (8, 2), (9, 2), (10, 0), (10, 4), (10, 5), (11, 0), (12, 0), (12, 3), (13, 0), (13, 1), (13, 2), (13, 3), (16, 5), (16, 6), (17, 0), (17, 1), (19, 0), (19, 1), (21, 0), (21, 1), (25, 23), (25, 24), (27, 2), (27, 23), (27, 24), (28, 2), (29, 23), (29, 26), (30, 1), (30, 8), (31, 0), (31, 24), (31, 25), (31, 28), (32, 2), (32, 8), (32, 14), (32, 15), (32, 18), (32, 20), (32, 22), (32, 23), (32, 29), (32, 30), (32, 31), (33, 8), (33, 9), (33, 13), (33, 14), (33, 15), (33, 18), (33, 19), (33, 20), (33, 22), (33, 23), (33, 26), (33, 27), (33, 28), (33, 29), (33, 30), (33, 31), (33, 32)] # edges in DGL is added by two list of nodes: src and dst src, dst = tuple(zip(*edge_list)) g.add_edges(src, dst) # edges are directional in DGL; make it bi-directional g.add_edges(dst, src) return g ############################################################################### # We can test it to see we have the correct number of nodes and edges: G = build_karate_club_graph() print('We have %d nodes.' % G.number_of_nodes()) print('We have %d edges.' % G.number_of_edges()) ############################################################################### # We can also visualize it by converting it to a `networkx # `_ graph: import networkx as nx nx_G = G.to_networkx() pos = nx.circular_layout(nx_G) nx.draw(nx_G, pos, with_labels=True) ############################################################################### # Assign features # --------------- # Features are tensor data associated with nodes and edges. The features of # mulitple nodes/edges are batched along the first dimension. Following codes # assign a one-hot encoding feature for each node in the graph (e.g. :math:`v_i` got # a feature vector :math:`[0,\ldots,1,\dots,0]`, where the :math:`i^{th}` location is one). import torch G.ndata['feat'] = torch.eye(34) ############################################################################### # We can print out the node features to verify: # print out node 2's input feature print(G.nodes[2].data['feat']) # print out node 10 and 11's input features print(G.nodes[[10, 11]].data['feat']) ############################################################################### # Define a Graph Convolutional Network (GCN) # ------------------------------------------ # To classify whose side each node will join, we adopt the Graph Convolutional # Network (GCN) developed by `Kipf and # Welling `_. The GCN model can be summarized, # in a high-level as follows: # # - Each node :math:`v_i` has a feature vector :math:`h_i`. # - Each node accumulates the feature vectors :math:`h_j` from its neighbors, performs # an affine and non-linear transformation to update its own feature. # # A graphical demonstration is displayed below. # # .. image:: https://s3.us-east-2.amazonaws.com/dgl.ai/tutorial/1_first/mailbox.png # :alt: mailbox # :align: center # # The GCN layer can be easily implemented in DGL using the message passing # interface. It typically consists of three steps: # # 1. Define the message function. # 2. Define the reduce function. # 3. Define how they are triggered using message passing APIs (e.g. ``send`` and ``recv``). # # Following is how it looks like: import torch.nn as nn import torch.nn.functional as F # Define the message & reduce function # NOTE: we ignore the normalization constant c_ij for this tutorial. def gcn_message(edges): # The argument is a batch of edges. # This computes a message called 'msg' using the source node's feature 'h'. return {'msg' : edges.src['h']} def gcn_reduce(nodes): # The argument is a batch of nodes. # This computes the new 'h' features by summing the received 'msg' # in mailbox. return {'h' : torch.sum(nodes.mailbox['msg'], dim=1)} # Define the GCNLayer module class GCNLayer(nn.Module): def __init__(self, in_feats, out_feats): super(GCNLayer, self).__init__() self.linear = nn.Linear(in_feats, out_feats) def forward(self, g, inputs): # g is the graph and the inputs is the input node features # first set the node features g.ndata['h'] = inputs # trigger message passing on all the edges and nodes g.send(g.edges(), gcn_message) g.recv(g.nodes(), gcn_reduce) # get the result node features h = g.ndata.pop('h') # perform linear transformation return self.linear(h) ############################################################################### # We then define a neural network that contains two GCN layers: # Define a 2-layer GCN model class Net(nn.Module): def __init__(self, in_feats, hidden_size, num_classes): super(Net, self).__init__() self.gcn1 = GCNLayer(in_feats, hidden_size) self.gcn2 = GCNLayer(hidden_size, num_classes) def forward(self, g, inputs): h = self.gcn1(g, inputs) h = torch.relu(h) h = self.gcn2(g, h) return h # input_feature_size=34, hidden_size=5, num_classes=2 net = Net(34, 5, 2) ############################################################################### # Train the GCN model to predict community # ---------------------------------------- # # To prepare the input features and labels, again, we adopt a # semi-supervised setting. Each node is initialized by an # one-hot encoding, and only the instructor (node 0) and the club president # (node 33) are labeled. inputs = torch.eye(34) labeled_nodes = torch.tensor([0, 33]) # only the instructor and the president nodes are labeled labels = torch.tensor([0, 1]) # their labels are different ############################################################################### # The training loop is no fancier than other NN models. We (1) create an optimizer, # (2) feed the inputs to the model, (3) calculate the loss and (4) use autograd # to optimize the model. optimizer = torch.optim.Adam(net.parameters(), lr=0.01) all_logits = [] for epoch in range(30): logits = net(G, inputs) # we save the logits for visualization later all_logits.append(logits.detach()) logp = F.log_softmax(logits, 1) # we only compute loss for labeled nodes loss = F.nll_loss(logp[labeled_nodes], labels) optimizer.zero_grad() loss.backward() optimizer.step() print('Epoch %d | Loss: %.4f' % (epoch, loss.item())) ############################################################################### # Since the model produces a 2-dimensional vector for each node, we can # visualize it very easily. import matplotlib.animation as animation import matplotlib.pyplot as plt def draw(i): cls1color = '#00FFFF' cls2color = '#FF00FF' pos = {} colors = [] for v in range(34): pos[v] = all_logits[i][v].numpy() cls = pos[v].argmax() colors.append(cls1color if cls else cls2color) ax.cla() ax.axis('off') ax.set_title('Epoch: %d' % i) nx.draw_networkx(nx_G.to_undirected(), pos, node_color=colors, with_labels=True, node_size=300, ax=ax) ############################################################################### # We first plot the initial guess before training. As you can see, the nodes # are not classified correctly. fig = plt.figure(dpi=150) fig.clf() ax = fig.subplots() draw(0) # draw the prediction of the first epoch plt.close() ############################################################################### # .. image:: https://s3.us-east-2.amazonaws.com/dgl.ai/tutorial/1_first/karate0.png # :height: 300px # :width: 400px # :align: center ############################################################################### # The following animation shows how the model correctly predicts the community # after training. ani = animation.FuncAnimation(fig, draw, frames=len(all_logits), interval=200) ############################################################################### # .. image:: https://s3.us-east-2.amazonaws.com/dgl.ai/tutorial/1_first/karate.gif # :height: 300px # :width: 400px # :align: center ############################################################################### # Next steps # ---------- # In the :doc:`next tutorial <2_basics>`, we will go through some more basics # of DGL, such as reading and writing node/edge features.