# Work Implemented in DGL-LifeSci We provide various examples across 3 applications -- property prediction, generative models and protein-ligand binding affinity prediction. ## Datasets/Benchmarks - MoleculeNet: A Benchmark for Molecular Machine Learning [[paper]](https://arxiv.org/abs/1703.00564), [[website]](http://moleculenet.ai/) - [Tox21 with DGL](../python/dgllife/data/tox21.py) - [PDBBind with DGL](../python/dgllife/data/pdbbind.py) - Alchemy: A Quantum Chemistry Dataset for Benchmarking AI Models [[paper]](https://arxiv.org/abs/1906.09427), [[github]](https://github.com/tencent-alchemy/Alchemy) - [Alchemy with DGL](../python/dgllife/data/alchemy.py) ## Property Prediction - Semi-Supervised Classification with Graph Convolutional Networks (GCN) [[paper]](https://arxiv.org/abs/1609.02907), [[github]](https://github.com/tkipf/gcn) - [GCN-Based Predictor with DGL](../python/dgllife/model/model_zoo/gcn_predictor.py) - [Example for Molecule Classification](property_prediction/classification.py) - Graph Attention Networks (GAT) [[paper]](https://arxiv.org/abs/1710.10903), [[github]](https://github.com/PetarV-/GAT) - [GAT-Based Predictor with DGL](../python/dgllife/model/model_zoo/gat_predictor.py) - [Example for Molecule Classification](property_prediction/classification.py) - SchNet: A continuous-filter convolutional neural network for modeling quantum interactions [[paper]](https://arxiv.org/abs/1706.08566), [[github]](https://github.com/atomistic-machine-learning/SchNet) - [SchNet with DGL](../python/dgllife/model/model_zoo/schnet_predictor.py) - [Example for Molecule Regression](property_prediction/regression.py) - Molecular Property Prediction: A Multilevel Quantum Interactions Modeling Perspective (MGCN) [[paper]](https://arxiv.org/abs/1906.11081) - [MGCN with DGL](../python/dgllife/model/model_zoo/mgcn_predictor.py) - [Example for Molecule Regression](property_prediction/regression.py) - Neural Message Passing for Quantum Chemistry (MPNN) [[paper]](https://arxiv.org/abs/1704.01212), [[github]](https://github.com/brain-research/mpnn) - [MPNN with DGL](../python/dgllife/model/model_zoo/mpnn_predictor.py) - [Example for Molecule Regression](property_prediction/regression.py) - Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism (AttentiveFP) [[paper]](https://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.9b00959) - [AttentiveFP with DGL](../python/dgllife/model/model_zoo/attentivefp_predictor.py) - [Example for Molecule Regression](property_prediction/regression.py) ## Generative Models - Learning Deep Generative Models of Graphs (DGMG) [[paper]](https://arxiv.org/abs/1803.03324) - [DGMG with DGL](../python/dgllife/model/model_zoo/dgmg.py) - [Example Training Script](generative_models/dgmg) - Junction Tree Variational Autoencoder for Molecular Graph Generation (JTNN) [[paper]](https://arxiv.org/abs/1802.04364) - [JTNN with DGL](../python/dgllife/model/model_zoo/jtnn) - [Example Training Script](generative_models/jtnn) ## Binding Affinity Prediction - Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity (ACNN) [[paper]](https://arxiv.org/abs/1703.10603), [[github]](https://github.com/deepchem/deepchem/tree/master/contrib/atomicconv) - [ACNN with DGL](../python/dgllife/model/model_zoo/acnn.py) - [Example Training Script](binding_affinity_prediction) ## Reaction Prediction - A graph-convolutional neural network model for the prediction of chemical reactivity [[paper]](https://pubs.rsc.org/en/content/articlelanding/2019/sc/c8sc04228d#!divAbstract), [[github]](https://github.com/connorcoley/rexgen_direct) - An earlier version was published in NeurIPS 2017 as "Predicting Organic Reaction Outcomes with Weisfeiler-Lehman Network" [[paper]](https://arxiv.org/abs/1709.04555) - [WLN with DGL for Reaction Center Prediction](../python/dgllife/model/model_zoo/wln_reaction_center.py) - [Example Script](reaction_prediction/rexgen_direct)