import operator import sys import backend as F import dgl.sparse as dglsp import pytest import torch # TODO(#4818): Skipping tests on win. if not sys.platform.startswith("linux"): pytest.skip("skipping tests on win", allow_module_level=True) @pytest.mark.parametrize("val_shape", [(), (2,)]) @pytest.mark.parametrize("opname", ["add", "sub"]) def test_addsub_coo(val_shape, opname): op = getattr(operator, opname) func = getattr(dglsp, opname) ctx = F.ctx() row = torch.tensor([1, 0, 2]).to(ctx) col = torch.tensor([0, 3, 2]).to(ctx) val = torch.randn(row.shape + val_shape).to(ctx) A = dglsp.from_coo(row, col, val) row = torch.tensor([1, 0]).to(ctx) col = torch.tensor([0, 2]).to(ctx) val = torch.randn(row.shape + val_shape).to(ctx) B = dglsp.from_coo(row, col, val, shape=A.shape) C1 = op(A, B).to_dense() C2 = func(A, B).to_dense() dense_C = op(A.to_dense(), B.to_dense()) assert torch.allclose(dense_C, C1) assert torch.allclose(dense_C, C2) with pytest.raises(TypeError): op(A, 2) with pytest.raises(TypeError): op(2, A) @pytest.mark.parametrize("val_shape", [(), (2,)]) @pytest.mark.parametrize("opname", ["add", "sub"]) def test_addsub_csr(val_shape, opname): op = getattr(operator, opname) func = getattr(dglsp, opname) ctx = F.ctx() indptr = torch.tensor([0, 1, 2, 3]).to(ctx) indices = torch.tensor([3, 0, 2]).to(ctx) val = torch.randn(indices.shape + val_shape).to(ctx) A = dglsp.from_csr(indptr, indices, val) indptr = torch.tensor([0, 1, 2, 2]).to(ctx) indices = torch.tensor([2, 0]).to(ctx) val = torch.randn(indices.shape + val_shape).to(ctx) B = dglsp.from_csr(indptr, indices, val, shape=A.shape) C1 = op(A, B).to_dense() C2 = func(A, B).to_dense() dense_C = op(A.to_dense(), B.to_dense()) assert torch.allclose(dense_C, C1) assert torch.allclose(dense_C, C2) with pytest.raises(TypeError): op(A, 2) with pytest.raises(TypeError): op(2, A) @pytest.mark.parametrize("val_shape", [(), (2,)]) @pytest.mark.parametrize("opname", ["add", "sub"]) def test_addsub_csc(val_shape, opname): op = getattr(operator, opname) func = getattr(dglsp, opname) ctx = F.ctx() indptr = torch.tensor([0, 1, 1, 2, 3]).to(ctx) indices = torch.tensor([1, 2, 0]).to(ctx) val = torch.randn(indices.shape + val_shape).to(ctx) A = dglsp.from_csc(indptr, indices, val) indptr = torch.tensor([0, 1, 1, 2, 2]).to(ctx) indices = torch.tensor([1, 0]).to(ctx) val = torch.randn(indices.shape + val_shape).to(ctx) B = dglsp.from_csc(indptr, indices, val, shape=A.shape) C1 = op(A, B).to_dense() C2 = func(A, B).to_dense() dense_C = op(A.to_dense(), B.to_dense()) assert torch.allclose(dense_C, C1) assert torch.allclose(dense_C, C2) with pytest.raises(TypeError): op(A, 2) with pytest.raises(TypeError): op(2, A) @pytest.mark.parametrize("val_shape", [(), (2,)]) @pytest.mark.parametrize("opname", ["add", "sub"]) def test_addsub_diag(val_shape, opname): op = getattr(operator, opname) func = getattr(dglsp, opname) ctx = F.ctx() shape = (3, 4) val_shape = (shape[0],) + val_shape D1 = dglsp.diag(torch.randn(val_shape).to(ctx), shape=shape) D2 = dglsp.diag(torch.randn(val_shape).to(ctx), shape=shape) C1 = op(D1, D2).to_dense() C2 = func(D1, D2).to_dense() dense_C = op(D1.to_dense(), D2.to_dense()) assert torch.allclose(dense_C, C1) assert torch.allclose(dense_C, C2) with pytest.raises(TypeError): op(D1, 2) with pytest.raises(TypeError): op(2, D1) @pytest.mark.parametrize("val_shape", [(), (2,)]) def test_add_sparse_diag(val_shape): ctx = F.ctx() row = torch.tensor([1, 0, 2]).to(ctx) col = torch.tensor([0, 3, 2]).to(ctx) val = torch.randn(row.shape + val_shape).to(ctx) A = dglsp.from_coo(row, col, val) shape = (3, 4) val_shape = (shape[0],) + val_shape D = dglsp.diag(torch.randn(val_shape).to(ctx), shape=shape) sum1 = (A + D).to_dense() sum2 = (D + A).to_dense() sum3 = dglsp.add(A, D).to_dense() sum4 = dglsp.add(D, A).to_dense() dense_sum = A.to_dense() + D.to_dense() assert torch.allclose(dense_sum, sum1) assert torch.allclose(dense_sum, sum2) assert torch.allclose(dense_sum, sum3) assert torch.allclose(dense_sum, sum4) @pytest.mark.parametrize("val_shape", [(), (2,)]) def test_sub_sparse_diag(val_shape): ctx = F.ctx() row = torch.tensor([1, 0, 2]).to(ctx) col = torch.tensor([0, 3, 2]).to(ctx) val = torch.randn(row.shape + val_shape).to(ctx) A = dglsp.from_coo(row, col, val) shape = (3, 4) val_shape = (shape[0],) + val_shape D = dglsp.diag(torch.randn(val_shape).to(ctx), shape=shape) diff1 = (A - D).to_dense() diff2 = (D - A).to_dense() diff3 = dglsp.sub(A, D).to_dense() diff4 = dglsp.sub(D, A).to_dense() dense_diff = A.to_dense() - D.to_dense() assert torch.allclose(dense_diff, diff1) assert torch.allclose(dense_diff, -diff2) assert torch.allclose(dense_diff, diff3) assert torch.allclose(dense_diff, -diff4) @pytest.mark.parametrize("op", ["mul", "truediv", "pow"]) def test_error_op_sparse_diag(op): ctx = F.ctx() row = torch.tensor([1, 0, 2]).to(ctx) col = torch.tensor([0, 3, 2]).to(ctx) val = torch.randn(row.shape).to(ctx) A = dglsp.from_coo(row, col, val) shape = (3, 4) D = dglsp.diag(torch.randn(row.shape[0]).to(ctx), shape=shape) with pytest.raises(TypeError): getattr(operator, op)(A, D) with pytest.raises(TypeError): getattr(operator, op)(D, A)