# SEAL Implementation for OGBL in DGL Introduction ------------ This is an example of implementing [SEAL](https://arxiv.org/pdf/2010.16103.pdf) for link prediction in DGL. Some parts are migrated from [https://github.com/facebookresearch/SEAL_OGB](https://github.com/facebookresearch/SEAL_OGB). Requirements ------------ [PyTorch](https://pytorch.org/), [DGL](https://www.dgl.ai/), [OGB](https://ogb.stanford.edu/docs/home/), and other python libraries: numpy, scipy, tqdm, scikit-learn, etc. Usages ------ Run the following command for results on each benchmark ```bash # ogbl-ppa python main.py \ --dataset ogbl-ppa \ --use_feature \ --use_edge_weight \ --eval_steps 5 \ --epochs 20 \ --train_percent 5 # ogbl-collab python main.py \ --dataset ogbl-collab \ --train_percent 15 \ --hidden_channels 256 \ --use_valedges_as_input # ogbl-ddi python main.py \ --dataset ogbl-ddi \ --ratio_per_hop 0.2 \ --use_edge_weight \ --eval_steps 1 \ --epochs 10 \ --train_percent 5 # ogbl-citation2 python main.py \ --dataset ogbl-citation2 \ --use_feature \ --use_edge_weight \ --eval_steps 1 \ --epochs 10 \ --train_percent 2 \ --val_percent 1 \ --test_percent 1 ``` Results ------- | | ogbl-ppa (Hits@100) | ogbl-collab (Hits@50) | ogbl-ddi (Hits@20) | ogbl-citation2 (MRRd) | |--------------|---------------------|-----------------------|--------------------|---------------------| | Paper Test Results | 48.80%±3.16% | 64.74%±0.43% | 30.56%±3.86%* | 87.67%±0.32r% | | Our Test Results | 49.48%±2.52% | 64.23%±0.57% | 27.93%±4.19% | 86.29%±0.47% | \* Note that the relatively large gap on ogbl-ddi may come from the high variance of results on this dataset. We get 28.77%±3.43% by only changing the sampling seed. Reference --------- @article{zhang2021labeling, title={Labeling Trick: A Theory of Using Graph Neural Networks for Multi-Node Representation Learning}, author={Zhang, Muhan and Li, Pan and Xia, Yinglong and Wang, Kai and Jin, Long}, journal={Advances in Neural Information Processing Systems}, volume={34}, year={2021} } @inproceedings{zhang2018link, title={Link prediction based on graph neural networks}, author={Zhang, Muhan and Chen, Yixin}, booktitle={Advances in Neural Information Processing Systems}, pages={5165--5175}, year={2018} }