import torch from dgl.mock_sparse2 import ( create_from_coo, create_from_csc, create_from_csr, SparseMatrix, ) def clone_detach_and_grad(t): t = t.clone().detach() t.requires_grad_() return t def rand_coo(shape, nnz, dev): row = torch.randint(0, shape[0], (nnz,), device=dev) col = torch.randint(0, shape[1], (nnz,), device=dev) val = torch.randn(nnz, device=dev, requires_grad=True) return create_from_coo(row, col, val, shape) def rand_csr(shape, nnz, dev): row = torch.randint(0, shape[0], (nnz,), device=dev) col = torch.randint(0, shape[1], (nnz,), device=dev) val = torch.randn(nnz, device=dev, requires_grad=True) indptr = torch.zeros(shape[0] + 1, device=dev, dtype=torch.int64) for r in row.tolist(): indptr[r + 1] += 1 indptr = torch.cumsum(indptr, 0) indices = col return create_from_csr(indptr, indices, val, shape=shape) def rand_csc(shape, nnz, dev): row = torch.randint(0, shape[0], (nnz,), device=dev) col = torch.randint(0, shape[1], (nnz,), device=dev) val = torch.randn(nnz, device=dev, requires_grad=True) indptr = torch.zeros(shape[1] + 1, device=dev, dtype=torch.int64) for c in col.tolist(): indptr[c + 1] += 1 indptr = torch.cumsum(indptr, 0) indices = row return create_from_csc(indptr, indices, val, shape=shape) def sparse_matrix_to_dense(A: SparseMatrix): dense = A.dense() dense.requires_grad_() return dense def sparse_matrix_to_torch_sparse(A: SparseMatrix): row, col = A.coo() edge_index = torch.cat((row.unsqueeze(0), col.unsqueeze(0)), 0) shape = A.shape val = A.val.clone().detach() if len(A.val.shape) > 1: shape += (A.val.shape[-1],) ret = torch.sparse_coo_tensor(edge_index, val, shape).coalesce() ret.requires_grad_() return ret