# Stochastic Training for Graph Convolutional Networks DEPRECATED!! * Paper: [Control Variate](https://arxiv.org/abs/1710.10568) * Paper: [Skip Connection](https://arxiv.org/abs/1809.05343) * Author's code: [https://github.com/thu-ml/stochastic_gcn](https://github.com/thu-ml/stochastic_gcn) Dependencies ------------ - PyTorch 0.4.1+ - requests ``bash pip install torch requests `` ### Neighbor Sampling & Skip Connection #### cora Test accuracy ~83% with --num-neighbors 2, ~84% by training on the full graph ``` DGLBACKEND=pytorch python3 gcn_ns_sc.py --dataset cora --self-loop --num-neighbors 2 --batch-size 1000000 --test-batch-size 1000000 ``` #### citeseer Test accuracy ~69% with --num-neighbors 2, ~70% by training on the full graph ``` DGLBACKEND=pytorch python3 gcn_ns_sc.py --dataset citeseer --self-loop --num-neighbors 2 --batch-size 1000000 --test-batch-size 1000000 ``` #### pubmed Test accuracy ~76% with --num-neighbors 3, ~77% by training on the full graph ``` DGLBACKEND=pytorch python3 gcn_ns_sc.py --dataset pubmed --self-loop --num-neighbors 3 --batch-size 1000000 --test-batch-size 1000000 ``` ### Control Variate & Skip Connection #### cora Test accuracy ~84% with --num-neighbors 1, ~84% by training on the full graph ``` DGLBACKEND=pytorch python3 gcn_cv_sc.py --dataset cora --self-loop --num-neighbors 1 --batch-size 1000000 --test-batch-size 1000000 ``` #### citeseer Test accuracy ~69% with --num-neighbors 1, ~70% by training on the full graph ``` DGLBACKEND=pytorch python3 gcn_cv_sc.py --dataset citeseer --self-loop --num-neighbors 1 --batch-size 1000000 --test-batch-size 1000000 ``` #### pubmed Test accuracy ~77% with --num-neighbors 1, ~77% by training on the full graph ``` DGLBACKEND=pytorch python3 gcn_cv_sc.py --dataset pubmed --self-loop --num-neighbors 1 --batch-size 1000000 --test-batch-size 1000000 ```